Introduction

A multitude of factors contributes to the failure of the CNS to recover after an insult, whether it is disease or injury related. The cellular environment is antagonistic to regeneration because of the formation of a glial and fibrotic barrier (Davies et al., 1999; Tom et al., 2004), immune responses, which generally are prohibitive (Horn et al., 2008; Kigerl et al., 2009), and the inhibitory nature of myelin debris from damaged axons (GrandPre et al., 2000; Lee et al., 2010; Schwab and Caroni, 1988). Even when inhibitory environmental factors are neutralized, adult CNS neurons do not express the appropriate panel of genes to re-generate an axon (Blackmore et al., 2000; Lee et al., 2010; Schwab and Caroni, 1988). Even when inhibitory environmental factors are neutralized, adult CNS neurons do not express the appropriate panel of genes to re-generate an axon (Blackmore and Letourneau, 2006; Chen et al., 1995; Goldberg et al., 2002). However, modifying the intrinsic regeneration capacity of injured CNS neurons has been successful. Genetic deletion of phosphatase and tensin homologue (PTEN; Liu et al., 2010; Park et al., 2008), suppressor of cytokine signaling 3 (SOCS3; Smith et al., 2009) or Krüppel-like transcription factor 4 (KLF4; Moore et al., 2009) are examples of how the removal of inhibitory genetic factors promotes regeneration, while in the case of activated KLF7, adding back an axonal growth promoter can enhance regeneration (Blackmore et al., 2012). It seems highly likely that additional transcription factors remain to be identified that contribute to the regeneration process.

PTEN (Park et al., 2008) and KLFs 4/7 (Blackmore et al., 2010; Moore et al., 2009) were identified in screens examining genes associated with cellular proliferation and developmental regulation of axon growth. We implicated signal transducer and activator of transcription 3 (STAT3) as a key regulator of axon growth in dorsal root ganglion (DRG) neurons after comparing gene expression in regenerating peripheral neurons (DRGs) and non-regenerating CNS neurons (cerebellar granular neurons; CGNs; Smith et al., 2011), an observation that has since gained additional support (Bareyre et al., 2011). Our previous studies targeted single genes (Blackmore et al., 2010; Smith et al., 2011) mostly due to technical challenges associated with overexpressing multiple genes. We recently overcame this hurdle and have successfully employed a technique to overexpress multiple genes simultaneously (Blackmore et al., 2012; Lerch et al., 2012; Tang et al., 2009).

In the present study we targeted nine genes for overexpression in CNS neurons singly and in pairwise combinations. In these experiments, the combination of JUN and signal transducer and activator of neurotransmission is antagonistic to regeneration because of the formation of a glial and fibrotic barrier (Davies et al., 1999; Tom et al., 2004), immune responses, which generally are prohibitive (Horn et al., 2008; Kigerl et al., 2009), and the inhibitory nature of myelin debris from damaged axons (GrandPre et al., 2000; Lee et al., 2010; Schwab and Caroni, 1988). Even when inhibitory environmental factors are neutralized, adult CNS neurons do not express the appropriate panel of genes to re-generate an axon (Blackmore and Letourneau, 2006; Chen et al., 1995; Goldberg et al., 2002). However, modifying the intrinsic regeneration capacity of injured CNS neurons has been successful. Genetic deletion of phosphatase and tensin homologue (PTEN; Liu et al., 2010; Park et al., 2008), suppressor of cytokine signaling 3 (SOCS3; Smith et al., 2009) or Krüppel-like transcription factor 4 (KLF4; Moore et al., 2009) are examples of how the removal of inhibitory genetic factors promotes regeneration, while in the case of activated KLF7, adding back an axonal growth promoter can enhance regeneration (Blackmore et al., 2012). It seems highly likely that additional transcription factors remain to be identified that contribute to the regeneration process.

PTEN (Park et al., 2008) and KLFs 4/7 (Blackmore et al., 2010; Moore et al., 2009) were identified in screens examining genes associated with cellular proliferation and developmental regulation of axon growth. We implicated signal transducer and activator of transcription 3 (STAT3) as a key regulator of axon growth in dorsal root ganglion (DRG) neurons after comparing gene expression in regenerating peripheral neurons (DRGs) and non-regenerating CNS neurons (cerebellar granular neurons; CGNs; Smith et al., 2011), an observation that has since gained additional support (Bareyre et al., 2011). Our previous studies targeted single genes (Blackmore et al., 2010; Smith et al., 2011) mostly due to technical challenges associated with overexpressing multiple genes. We recently overcame this hurdle and have successfully employed a technique to overexpress multiple genes simultaneously (Blackmore et al., 2012; Lerch et al., 2012; Tang et al., 2009).

In the present study we targeted nine genes for overexpression in CNS neurons singly and in pairwise combinations. In these experiments, the combination of JUN and signal transducer and activator of
transcription 6 (STAT6) increased total neurite length in dissociated cortical neurons. In organotypic cortical slice cultures, JUN alone promoted growth as well as the JUN/STAT6 combination. JUN is thought to act transcriptionally, as homo- or heterodimers, at AP-1 binding sites (Rauscher et al., 1988). Interestingly, while cortical slices transfected with JUN have similar numbers of surviving neurons and showed increased JUN mRNA and protein, expression of two potential downstream targets (growth associated protein 43 [GAP43] and integrin alpha 7 [ITGA7]) were unchanged and decreased, respectively. Overall, this study demonstrates that JUN can promote axon growth and regeneration in cortical neurons, and suggests that it does so in a way that is mechanistically distinct from what is observed in peripheral axons.

Results

Transcription factor combination overexpression screen in postnatal cortical neurons identifies JUN as potential regulator of CNS neuron axon growth

One way to change the phenotype of a cell is to systematically target individual genes for overexpression. Transcription factors (TFs) are useful targets because they have the potential to mediate widespread changes in gene expression. Our laboratory has used transcription factor overexpression followed by neuronal morphology analysis on both permissive (poly-D-lysine and/or laminin) and inhibitory substrates (chondroitin sulfate proteoglycans, CSPGs) to identify key TFs involved in axon growth (Blackmore et al., 2010, 2012; Buchser et al., 2012; Smith et al., 2011). In the present study we examined eight transcription factors and one small GTPase because when they were individually overexpressed in other assays in our lab they modestly enhanced CNS neuron neurite outgrowth (Table 1 and Supplementary Fig. 1, Blackmore et al., 2010; Smith et al., 2011). We overexpressed two genes simultaneously and could subsequently identify neurons transfected with both genes by exploiting the 2A-peptide labeling strategy (Tang et al., 2009). The coding DNA sequence of the transcription factor was placed upstream of the 2A-mCherry or the 2A-enhanced green fluorescent protein (EGFP) sequence. Appropriate expression of the test proteins and the mCherry or EGFP reporter for each plasmid was verified by transfection into HEK293 cells (examples shown for JUN and STAT6; Fig. 1A,B).

Next we examined the effect of transcription factor overexpression on cortical neuron neurite growth. This experiment was performed in primary postnatal day 3 (PN3) cortical neurons. This age was chosen because primary cultures from adult neurons have low viability and transfection experiments are impractical. In addition these neurons have proven effective in past studies for identifying gene targets involved in axon regeneration (Blackmore et al., 2010; Moore et al., 2009) in each experiment two transcription factor plasmids were electroporated in pairwise combinations, or individual transcription factors were electroporated together with a neutral control cDNA, oxidative resistance 1 (Oxr1). This gene has no appreciable effect on neurite outgrowth when overexpressed in cortical neurons (Blackmore et al., 2010). Plasmid ratios were kept at 1:1 yielding co-transfection rates around 80%, as assessed by expression of reporter genes from each plasmid (Fig. 2A, thick arrows). Neurite length measurements were taken from cells expressing both plasmids (e.g., Fig. 2A), and normalized to neurite lengths for neurons expressing two control genes—OXR1 and an enhanced blue fluorescent protein (OXR1-2A-EGFP/mCherry):

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Gene symbol</th>
<th>Effect, cell type and substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic helix-loop-helix family, member e40</td>
<td>Blhhe40</td>
<td>↑ CT on LN; ↑ HP on LN</td>
</tr>
<tr>
<td>Doublecortin</td>
<td>Dcx</td>
<td>↑ CT on LN</td>
</tr>
<tr>
<td>Iroquois Related Homeobox 3</td>
<td>Inx3</td>
<td>Not tested</td>
</tr>
<tr>
<td>Jun Oncogene</td>
<td>Jun</td>
<td>↑ HP neurons on CSPGs; ↑ CT on LN; ↑ HP on LN</td>
</tr>
<tr>
<td>Krüppel-like Factor 6</td>
<td>Klf6</td>
<td>↑ CT on LN</td>
</tr>
<tr>
<td>Krüppel-like Factor 7</td>
<td>Klf7</td>
<td>↑ CT neurons, LN</td>
</tr>
<tr>
<td>Myelocytomatosis Oncogene</td>
<td>Myc</td>
<td>↑ HP neurons, CSPGs; ↑ CNs on LN</td>
</tr>
<tr>
<td>Oxidation Resistance 1</td>
<td>Oxr1</td>
<td>No effect over numerous experiments</td>
</tr>
<tr>
<td>Ras Homolog Enriched in Brain</td>
<td>Rheb</td>
<td>↑ HP neurons, CSPGs</td>
</tr>
<tr>
<td>Signal Transducer and Activator of Transcription 3</td>
<td>Stat3</td>
<td>↑ CNs on LN</td>
</tr>
<tr>
<td>Signal Transducer and Activator of Transcription 6</td>
<td>Stat6</td>
<td>↑ HP neurons on CSPGs; ↑ CT on LN</td>
</tr>
<tr>
<td>SMAD Family Member 1</td>
<td>Smad1</td>
<td>Not tested</td>
</tr>
</tbody>
</table>
EBFP-2A-EGFP/mCherry). The cytoskeletal binding protein Doublecortin (DCX) and a transcriptionally active Krüppel-like factor 7 (VP16-KLF7; Blackmore et al., 2010, 2012) were included as positive controls because they reliably increase total neurite length (Fig. 2B). The majority of transcription factors did not actively repress neurite outgrowth. This result is expected since these transcription factors were chosen for combinatorial overexpression because of their ability to promote neurite growth in previous experiments (Supplemental Fig. 1, Table 1). For example, the basic helix-loop-helix family member e40 (BHLHE40) increased neurite growth in both dissociated cortical neurons and in hippocampal

Fig. 2. The JUN/STAT6 transcription factor combination increases neurite length in primary cortical neurons. (A) Representative images of early PN3 cortical neurons after transfection, immunostaining, and image acquisition and analysis on a Cellomics ArrayScanVTI (nuclear stain: Hoechst; neuronal processes: βIII-tubulin, DCX-2A-EGFP transfection: EGFP; OXR1-2A-mCherry transfection, mCherry). Thick arrows show examples of neurons positive for both EGFP and mCherry. (B) DCX and VP16-KLF7 consistently increased neurite length after transfection. OXR1 has no effect on neurite length. The average Z-Score (\(\text{Ave Total Neurite length TF Combo} - \text{Ave Total Neurite length OXR1/EBFP} \)/OXR1/EBFP Stdev) for each transcription factor or transcription factor combination is shown with a red dash. Individual experimental results are shown as black dots. Dashed black line indicates Z-Scores of ±2.0. (C) The number of transfected cells surviving after JUN transfection is not different than other plasmid combinations (labeled as COMBO) or controls (DCX and OXR1). One-Way ANOVA with Bonferroni’s Multiple Comparison Test, *\(P < 0.01 \) for DCX and COMBO, **\(P < 0.001 \) for DCX and TF2. (D) The number of neurons surviving per well for each condition is not different. Red bars reflect mean ± s.e.m. TF2 — transcription factor 2; NP — no plasmid.
neurons growing on inhibitory CSPGs (Supplemental Fig. 1). However, combinations including BHLHE40 were inconsistent in their ability to promote neurite growth. The only TF pair that increased neurite growth in several experiments was JUN/STAT6 (Z-Score Ave = 3.11, Fig. 2B). Neurons transfected with either JUN or STAT6 showed variable neurite lengths. However, of the transcription factors expressed alone, JUN gave the highest mean Z-Score (Z = 1.78, Fig. 2B), while STAT6 alone had no consistent effect. To determine if JUN altered neuronal survival we examined the number of transfected neurons and the total number of neurons in each well. If JUN promoted survival, the numbers of neurons after transfection (Fig. 2C) and the total number of neurons surviving in JUN transfected wells should be greater than in controls (Fig. 2D), but this was not the case. Taken together these experiments show that JUN has a variable, but generally positive impact on neurite length, does not affect neuronal survival after transfection, and when co-expressed with STAT6 can increase total neurite length in primary cortical neurons.

After viral transduction Jun transcript and protein are overexpressed in ex vivo cortical slice cultures

The previous observation, along with the fact that JUN has been implicated in peripheral nerve regeneration, led us to further test JUN’s role in CNS axon growth, using an organotypic cortical slice model (Al-Ali et al., 2013; Blackmore et al., 2012). In this model PNS cortical slices are “matured” for 1 week in vitro, after which they are injured by transection, and transected halves are allowed to fuse (Fig. 3A and Experimental Methods). Since we hypothesized that JUN overexpression would promote axon growth, we first assessed endogenous JUN expression during the 15 days in culture, corresponding to the time course of the experiment. JUN transcript levels did not significantly change during this time, either before or after the injury (Fig. 3B). We also examined the expression of two potential transcriptional targets: GAP43, whose expression is highly correlated with axon regeneration (Campbell et al., 1991; Schaden et al., 1994; Weber and Skene, 1998); and ITGA7, another potential downstream transcriptional effector of JUN (Raivich et al., 2004) that has been implicated in axon regeneration and ITGA7, another potential downstream transcriptional effector of JUN (Campbell et al., 1991; Schaden et al., 1994; Weber and Skene, 1998); whose expression is highly correlated with axon regeneration examined the expression of two potential transcriptional targets: GAP43, whose expression is highly correlated with axon regeneration.

Jun promotes CNS neuron axon growth in cortical slice cultures

The same cortical slice model was used to examine the effect of JUN overexpression on CNS axon growth. Cortical slices were virally transduced to overexpress each plasmid, then cut in half to axotomize the axons at the corpus collicus and each slice half was paired with a naive, unlabeled cortical slice half, after which the number of axons growing into the unlabeled side was quantified (Fig. 5A and as in Blackmore et al., 2012). After JUN transduction, the number of axons growing into the unlabeled cortical half was increased more than 3-fold (Fig. 5B,C). VP16-KLF7 also significantly increased the number of growing axons, supporting the in vitro data and previous observations (Blackmore et al., 2012). As anticipated, OX1 produced no increase in the number of axons growing into the unlabeled side (Fig. 5B,C). Importantly, the number of GFP+ neurons detected in each slice was not different in the various conditions (Fig. 4D,E), consistent with our observations that the number of transfected neurons and surviving neurons per well was not altered by JUN transfection in dissociated neurons (Fig. 2C,D). To examine whether increased axon growth was due to JUN transcriptional activity and not just increased transcriptional activity from any transcription factor we generated virus from the IRX3- and SMAD1-2A-mCherry plasmids. The number of axons growing in organotypic cortical slice cultures after IRX3 transduction was slightly, but not significantly reduced (Fig. 5B), which mirrors the observation in dissociated cortical neurons (Fig. 2B, Z-score mean = −0.73). SMAD1 had no appreciable effect on neurite growth in dissociated cortical neurons and indeed, cortical neurons transduced with SMAD1 grew similar numbers of axons as OX1 and EBFP controls (Fig. 5B,C).

Fig. 3. JUN and ITGA7 mRNA expression do not change in uninjured or injured cortical slice cultures while GAP43 mRNA decreases by 8 days (A) Experimental timeline. Cortical slices were isolated from PNS pups (DIV0) and cultured before RNA collection. RNA was isolated at 1, 8, and 15 days in vitro (DIV) for gene expression analysis. A set of cortical slices were cut in half at DIV8 before RNA harvest at DIV15 (iDIV15) to examine the effect of injury on gene expression. (B) qRT-PCR analysis for (B) JUN, (C) GAP43, and (D) ITGA7. ***P < 0.0001, One-way ANOVA followed by Dunnett’s Multiple Comparison Test. N = 3 slices.
In an effort to understand how JUN overexpression may be affecting downstream gene expression to promote axon growth we examined mRNA expression for GAP43 and ITGA7. Interestingly, GAP43 expression was unchanged while ITGA7 expression was decreased after either VP16-KLF7 or JUN transduction (Fig. 5D,E). This indicates that JUN overexpression in CNS neurons increases axon growth but is not associated with increases in GAP43 or ITGA7 mRNA expression.

Discussion

Despite years of work examining JUN’s relationship with axon growth and regeneration, gain of function studies directly testing a role for JUN in this process are surprisingly lacking. Here we discover a role for JUN in promoting cortical neuron neurite growth when overexpressed. JUN slightly increased neurite growth in dissociated cortical neurons. To test JUN’s ability to promote axon growth in a more in vivo-like environment, we examined the effect of JUN overexpression on the growth of axons in an organotypic cortical slice injury model. In this model the effect of JUN was more striking, increasing growth to a greater extent than the positive control, a transcriptionally active form of KLF7 that has been shown to promote regeneration in vivo (Blackmore et al., 2012). Interestingly, expression of JUN targets implicated in axon growth, GAP43 and ITGA7 (Raivich et al., 2004; Weber and Skene, 1998), did not increase when JUN was overexpressed. Overall these findings indicate that JUN can drive axonal growth in CNS neurons and suggests that the mechanisms through which JUN is acting are not identical to those seen previously in peripheral axons (Raivich et al., 2004; Schreyer and Skene, 1991).

We focused our analysis on JUN alone because expression of STAT6 did not affect neurite growth in dissociated cortical neurons,
nor did it significantly increase axon growth in the cortical slice model (axon # relative to EBFP treatment = 2.05 ± 0.32 sem; N = 20; Supplemental Fig. 3). In addition, the effect on axon growth after combinatorial transduction of JUN and STAT6 was comparable to JUN treatment alone (axon # relative to EBFP treatment: 3.58 ± 0.48 vs. 3.52 ± 0.57; N = 20, ***P < 0.0005; Supplemental Fig. 3). Interestingly, in JUN/STAT6 transduced cortical slices JUN mRNA levels were significantly increased above those detected with JUN treatment alone (Supplemental Fig. 2). This suggests that STAT6 either stabilizes or promotes JUN mRNA expression. In contrast, while STAT6 mRNA levels were increased 10,000-fold after STAT6 transduction, they did not further increase when JUN and STAT6 were combined (Supplemental Fig. 2).

JUN expression increases after either CNS or PNS neuronal injury, contributing to the idea that JUN is involved in axon regeneration. For example, after sciatic nerve crush, there is a sustained increase in both JUN mRNA and protein (Jenkins and Hunt, 1991). In addition, JUN expression increases only when the peripheral, but not the central branch, of a sensory neuron is lesioned, associating JUN with axon regeneration (Broude et al., 1997). This idea is supported by the observation that JUN is expressed in retinal ganglion cells growing into peripheral nerve graphs and is upregulated again when they are re-axotomized months later (Robinson, 1994, 1995; Schaden et al., 1994). Indeed, several groups knocked out JUN in populations of neurons that normally regenerate, and found that JUN was necessary for facial motor neuron axonal regeneration, target reinnervation and functional recovery (Raivich et al., 2004; Ruff et al., 2012). More recently, it was demonstrated that Schwann cell JUN function is critical for successful peripheral nerve regeneration (Arthur-Farraj et al., 2012; Fontana et al., 2012).

While these studies examine JUN’s expression and loss of function in populations of cells that are normally regenerating no one has previously tested the effect of JUN gain of function on axonal regeneration. Testing gain of function is challenging because it can be difficult to demonstrate that the protein is expressed and activated. We clearly show that both JUN mRNA and protein are increased after viral
transduction. In cortical slices JUN protein detection is most recognizable in cells that appear to be neuronal (Fig. 4B). While we have found that AAV8 preferentially labels cortical neurons (Blackmore et al., 2012), an observation that is consistent with previous reports on AAV8 tropism (Howard et al., 2008; Taymans et al., 2007), we cannot rule out the possibility that JUN expression in glia cells (e.g. in virally transduced astrocytes or oligodendrocytes) contributes to the increased axonal growth we observed. It was recently demonstrated that JUN expression in Schwann cells mediates peripheral and motor neuron regeneration (Arthur-Farrar et al., 2012; Fontana et al., 2012). However, this seems unlikely given the neuronal morphology of cells expressing JUN, and the expression in transduced cells of BIII tubulin (Fig. 4B).

To rule out the possibility that the increased axon regeneration reflected an increase in neuronal survival in JUN-treated cortical slices, we examined the number of GFP+ neurons after viral transfection (Fig. 4D,E). We found no differences in neuronal number between slices transduced to express JUN and those transduced with other TFs, suggesting that JUN overexpression did not promote increased survival.

In cortical slices GAP43 mRNA levels decrease substantially after 1 week in culture, consistent with previous observations documenting a developmental decline in GAP43 expression (Karimi-Abdolrezae et al., 2002; Karimi-Abdolrezae et al., 2002). In regenerating retinal ganglion cells, increases in JUN expression are coincident with increases in GAP43 expression (Schaden et al., 1994) and we find predicted JUN/AP1 transcription factor binding sites (TFBSs) in the GAP43 promoter (see Experimental Methods), consistent with a previous study (Weber and Skene, 1998). Thus we were surprised that JUN expression and increased cortical axon growth were not correlated with increases in expression of GAP43. We also examined expression of ITGA7, another transcript whose upregulation is associated with increased neurite growth (Blackmore et al., 2012). Cortical slices were then further dissected so that only the cortex and corpus callosum remained. The sections were carefully placed in Millicell culture inserts inside 35 mm Petri dishes with culture media made from Basal Medium, Eagles (Gibco), Hanks Balanced Salt Solution, and horse serum (Gibco), and NeuroCult™ SM1 Neuronal Supplement (Stemcell Technologies), l-glutamine (Invitrogen), d-glucose and pen/strep (Invitrogen). One microliter of viral particles (3.0E+13 viral genomes; Table 2) was applied to each side of the cortex 2–3 h after plating. After 24 h the slices were washed to remove residual viral particles and maintained for an additional week. Cortices transduced with viral particles were cut in half and paired with untransduced cortical tissue slices so that the two pieces were in physical contact, and were cultured for another week. Cortical slices were fixed with 4% paraformaldehyde in phosphate buffered saline, pH 7.4 and mounted onto glass slides with coverslips. For axon counts: three regions of interest (ROI; 210 μm2) each 1 mm from the border between the 2 halves of the slice were imaged on a confocal microscope (60×) through all Z-planes. The combined number of process crossing a vertical and a horizontal line through the center of each ROI was quantified (Fig. 5A). This number was normalized to the number of cortical neurons in each slice (Fig. 5A).

Cortical neuron transfection

Postnatal day 3 (PN3) rat pups were euthanized, cortices were removed and primary cortical neurons were isolated and transfected as previously described (Blackmore et al., 2010). Briefly, a square wave pulse (350 V, 350 μs; Harvard Apparatus/ BTX #45-0450) was applied to 50,000 cortical neurons resuspended in intraneuronal buffer (135 mM KCl, 0.2 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 5 mM EGTA, pH 7.3) containing a total of 6 μg of plasmid DNA (3 μg of each plasmid) for each condition. Cells were transferred to 24-well tissue culture plates (10,000/cells/well) co-transfected with 1 mg/mL poly-D-lysine (Invitrogen) with Neurobasal media (Lonza) supplemented with neuronal cell survival factor (NSF-1, Lonza) and grown for 72 h, then fixed and immunostained with a neuronal specific mouse monoclonal beta-III tubulin antibody (1:500; produced in house) and AlexaFluor647 secondary (1:1000; Invitrogen). Images were captured on a Celleomics ArrayScanVI automated microscope and neuronal morphology was assessed with the Neuronal Profiling Algorithm (Thermofisher). Total neurite length (TNL) was automatically captured for each transfected neuron. For each experimental condition a minimum of 100 cells was analyzed and the average TNL was calculated (TNLmean) for each transfection condition. Neurite lengths were compared as Z-Scores (Z = x − μ / σ; x = TNLCombo; μ = TNLControl; σ = standard deviation of TNLControl). We considered increases in neurite growth statistically significant if they were more than 2 standard deviations (2 Z-Scores) above the mean of the control (Oxidase resistance 1/enhanced blue fluorescent protein).

Cortical slice culture axon and GFP + cell counts

Between six and eight 350 μm coronal cortical slices were made from each brain of PNS Sprague Dawley rat pups using a tissue chopper (Blackmore et al., 2012). Cortical slices were then further dissected so that only the cortex and corpus callosum remained. The sections were carefully placed in Millicell culture inserts inside 35 mm Petri dishes with culture media made from Basal Medium, Eagles (Gibco), Hanks Balanced Salt Solution, and horse serum (Gibco), and NeuroCult™ SM1 Neuronal Supplement (Stemcell Technologies), l-glutamine (Invitrogen), d-glucose and pen/strep (Invitrogen). One microliter of viral particles (3.0E+13 viral genomes; Table 2) was applied to each side of the cortex 2–3 h after plating. After 24 h the slices were washed to remove residual viral particles and maintained for an additional week. Cortices transduced with viral particles were cut in half and paired with untransduced cortical tissue slices so that the two pieces were in physical contact, and were cultured for another week. Cortical slices were fixed with 4% paraformaldehyde in phosphate buffered saline, pH 7.4 and mounted onto glass slides with coverslips. For axon counts: three regions of interest (ROI; 210 μm2) each 1 mm from the border between the 2 halves of the slice were imaged on a confocal microscope (60×) through all Z-planes. The combined number of process crossing a vertical and a horizontal line through the center of each ROI was quantified (Fig. 5A). This number was normalized to the number of cortical neurons in each slice (Fig. 5A).

Experimental methods

All animal work was performed according to the AVMA guidelines and University of Miami IACUC approved protocols.

Table 2

<table>
<thead>
<tr>
<th>AAV8 particles</th>
<th>Number (μl)</th>
<th>Concentration (ng/μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTI-LUC-2A-EGFP</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>EBFP-2A-MCHERRY</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>IRX3-2A-MCHERRY</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>JUN-2A-MCHERRY</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>OXR1-2A-MCHERRY</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>SMAD1-2A-MCHERRY</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>VP16-KLF7-2A-MCHERRY</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)

Cortical slices were obtained and treated as above. RNA was extracted after tissue homogenization using Trizol Reagent (Invitrogen). CDNA was made from 500 ng of RNA using the Advantage RT for PCR Kit (Clontech).
Primers were designed to span introns and a no-RT control was run for every primer set to check for DNA contamination. Primer efficiencies were determined using a standard curve method and the delta delta Ct method was used for determine fold change. The following primers (5′ → 3′) were used: JUN: GAGCTCAGAGGCGGATCA, TGAATTTGGG CCACTCTGA; GAP43: GGTCTGCTACATTCCAG, GGACCGACTGAGGTTG; ITGA7: CTTCTTGTGTTCCCTGAGC, GCAAGACCAAAATGGTTC GT: ATGACCAAGGCACTATCTGC, ATCAAACACTGCAAAAGC.

Transcription factor binding site prediction

The GAP43 and ITGA7 promoter (~1000 bp/+300 bp from the transcription start site) DNA sequences were retrieved from the UCSC Genome Browser (http://genome.ucsc.edu/) and input into JASPAR (Bryne et al., 2008), which predicts transcription factor binding site matrices (TFBSs). JASPAR predicts four AP1 (Fos/Jun/ATF) TFBSs in the mouse GAP43 promoter, five in the rat GAP43 promoter, five in the mouse ITGA7 promoter and six in the rat ITGA7 promoter.

Western blot

HEK293 cells were transfected with Lipofectamine Reagent (Invitrogen) according to the manufacturer’s recommendation. Cells were lysed in boiling SDS sample buffer and samples were electrophoresed on 10% SDS-polyacrylamide gels at 100 V until the dye front reached the bottom of the gel. Transfers were performed overnight in 2.2 M boricate buffer at 20 V. Immunoblotting was performed with primary and secondary antibodies (primary antibodies: rabbit polyclonal antibody to β-actin, mouse monoclonal antibody to JUN; BD Biosciences –610362) and rabbit polyclonal antibody to β3, mouse monoclonal antibody to JUN (BD Biosciences –926-68072)). Blots were scanned on an Odyssey Imaging system and band intensities were analyzed using Odyssey system software (Li-COR).

Jun immunohistochemistry

Cortical slices were treated and fixed as described above. Slices were processed with mouse monoclonal antibody to JUN (BD Biosciences #610362) and rabbit polyclonal antibody to jßl-tubulin (Sigma #T2200) after antigen retrieval with 10 mM sodium citrate, pH 9.0 at 80 °C for 30 min. Secondary antibodies were goat-anti mouse Alexa Fluor 488 and goat-anti rabbit Alexa Fluor 546 (Life Technologies #A-610362) and rabbit polyclonal antibody to β3, mouse monoclonal antibody to JUN (BD Biosciences –926-68072)). Blots were scanned on an Odyssey Imaging system and band intensities were analyzed using Odyssey system software (Li-COR).

Acknowledgements

We thank Edna Gamliel for technical assistance. This work was supported by the National Institutes of Health grants HD057521 (to V.P.L.), and NS059866 (to J.L.B.), DOD grant W81XWH-05-1-0061 (to V.P.L. and J.L.B.), the Buonconti Fund and the Walter G. Ross Distinguished Chair in Developmental Neuroscience (to V.P.L.).

References

axonal regeneration, but the effects of phosphorylation of its N-terminus are moderate. J. Neurochem. 121, 607–618.

