Transcriptional profiling of intrinsic PNS factors in the postnatal mouse

Robin P. Smith a,b, Jessica K. Lerch-Haner a, Jose R. Pardin a,d, William J. Buchser a,b, John L. Bixby a,b,c, Vance P. Lemmon a,b,*

a The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
b Neuroscience Program, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
c Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
d Neuroscience Program, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA

Article history:
Received 17 March 2010
Revised 22 July 2010
Accepted 27 July 2010
Available online 7 August 2010

Keywords:
Dorsal root ganglion
Transcription factor
High content analysis
Screen
Systems biology
Cerebellar granule neuron
STAT3

Abstract

Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Adult central nervous system (CNS) axons fail to regenerate after injury due to inhibition by myelin and glial scar associated molecules (Silver and Miller, 2004; Yiu and He, 2006), as well as a loss of developmentally regulated intrinsic growth ability (Cohen et al., 1986; Goldberg et al., 2002). In contrast, neurons in the peripheral nervous system (PNS) regenerate under a variety of experimental paradigms, including stimulation with eAMP (Qiu et al., 2002), treatment with a small molecule inhibitor of protein kinase C (Sivasankaran et al., 2004), and after priming the peripheral nerve with a conditioning lesion (Richardson and Issa, 1994). Furthermore, DRG neurons have the ability to regenerate long distances through intact and degenerating CNS white matter (Davies et al., 1997, 1999), whereas CNS neurons transplanted under similar conditions display relatively modest outgrowth (Tom et al., 2004).

Pharmacological blockade of RNA synthesis (Smith and Skene, 1997), as well as genetic ablation of specific factors such as Jun (Raivich et al., 2004), strongly suggest that the intrinsic growth ability of PNS neurons is dependent upon transcription. Comparisons of gene expression changes after a peripheral nerve lesion have led to the identification of several regeneration associated transcription factors (TFs) including AKRD1 (Stam et al., 2007), SMAD1 (Zou et al., 2009), and NFIL3 (MacGillavry et al., 2009). Much less clear, however, are the identities of intrinsic, constitutively expressed TFs that are upstream of injury mechanisms and allow PNS neurons to respond to injury in situations where CNS neurons cannot.

Altering intrinsic gene expression of adult CNS neurons has led to improvements of axonal outgrowth after injury. Deletion of genes in postnatal CNS neurons such as Pten (Park et al., 2008), Klf4 (Moore et al., 2009) or Socs3 (Smith et al., 2009) results in significant regeneration of optic nerve fibers. Likewise, overexpression of developmentally down-regulated genes such as Kif6 and Kif7 can boost the growth of cortical spinal motor neurons in vitro by 50% (Blackmore et al.; Moore et al., 2009). As the identities and roles of these proteins in growth regulatory pathways become better appreciated, so too should our ability to target therapies to improve functional outcomes.

The accelerating pace of biomedical annotation has led to several novel techniques for probing the biological functions of transcription factors. Among these are the ability to query the promoters of an expression set to identify overrepresented transcription factor bindings sites (TFBSs) compared to a control expression set (Li et al., 2008). The pathway analysis tool Metacore (http://www.genego.com/metacore.php), which is able to draw upon an extensive set of curated protein–protein and protein–DNA interactions, has also proven useful in identifying differences in transcription networks between expression sets using closest-path algorithms (Birmachu et al., 2007). These techniques are essential because the enrichment of a TF in a particular...
cell type is not necessarily a predictor of function. The NF-κB transcriptional complex provides an excellent example for this principle in that it can either enhance or diminish sensory axon growth based on the phosphorylation state of RelA/p65 (Gutierrez et al., 2008).

In this report we outline a combinatorial strategy in which we utilize these new methods of biomedical annotation to identify 32 TFs that exhibit intrinsic differences between postnatal mouse PNS and CNS neurons, hypothesizing that some might be associated with the intrinsic ability of PNS neurons to regenerate. We then performed a high content analysis screen to identify potential roles of those factors in regulating neurite outgrowth of primary CNS neurons. Further, we demonstrate that the TF signal transducer and activator of transcription 3 (STAT3) is constitutively enriched and active in the PNS and can enhance the outgrowth of cerebellar granule neurons.

Results

Identification of PNS specific genes

To identify TFs preferentially expressed in the PNS, we generated a cDNA library of mRNAs enriched in DRG neurons using subtractive hybridization (Bonaldo et al., 1996; Diatchenko et al., 1996). This was accomplished by generating two separate cDNA libraries: the first from cultured postnatal DRG neurons, the second from autologous...
cerebellar tissue, followed by a hybridization step to remove cerebellar (driver) sequences that were also present in the DRG mRNA pool (Fig. 1A). Subtractive hybridization is advantageous as it allows detection of rare and novel mRNA populations and has greater sensitivity than microarrays (Cao et al., 2004).

Over 2000 clones from the DRG enriched cDNA library were sequenced and BLASTed against the Mus musculus UniGene database using the software package EST Express (Smith et al., 2008) to produce a list of 1068 distinct genes (Table S1). These sequences were deposited in GenBank and are publicly available (http://www.ncbi.nlm.nih.gov/UniGene/library.cgi?LID=24175). We used DAVID (Dennis et al., 2003) to identify overrepresented Gene Ontology (GO) (Ashburner et al., 2000) and Panther (Thomas et al., 2003) terms to identify overrepresented Gene Ontology (GO) (45.7% of annotated genes in the library) involved in the transcriptional regulation of mRNA synthesis (BP002285, adhesion (BP00124) and microtubule dynamics (GO:0007017). Interestingly, the DRG enriched gene list also included 378 genes (45.7% of annotated genes in the library) involved in the transcriptional regulation of mRNA synthesis (BP00044; Fig. 1B).

To complement the list of DRG enriched genes from the subtraction, we made use of publicly available microarray data from the Gene Expression Omnibus (GEO) (Edgar et al., 2002). Data series GSE2917 includes 5 replicates of laser capture microdissected (LCM) adult mouse DRG neurons obtained after intraperitoneal injection of the retrograde tracer cholera toxin B (Peeters et al., 2006). We combined this data with our own set of 3 replicate chips measuring P11 cerebellum mRNA levels using the same microarray platform. Because the microarray data sets were obtained in separate locations, we processed the DRG and cerebellum CEL files together using the Robust Multi-array Average (RMA) technique (Irizarry et al., 2003) and performed hierarchical clustering to verify replicate consistency (Fig. S1). The RMA technique performs background correction and quantile normalization to equally distribute probe intensities across arrays (Bolstad et al., 2003).

Normalized probe intensities representing 12,488 genes were used to determine a relative DRG/cerebellum expression measure, and a two-tailed Student’s T-test was used to determine the significance. To correct for multiple comparisons, we made use of the Benjamini–Hochberg false discovery rate (FDR) technique (Hochberg and Benjamini, 1990). By selecting genes that were 2-fold enriched with corrected p-values of less than 0.01, we identified 1252 and 892 genes that were significantly enriched in DRG neurons and cerebellum respectively (Table S2).

The subtractive hybridization and microarray approaches produced complementary data sets representing mRNA from two populations of sensory neurons separated by age (P7–10 vs. adult) and by experimental conditions (cultured vs. LCM). In addition, only 485 genes identified by subtractive hybridization were represented on the U74AV2 microarray platform (45%), creating the potential for only moderate overlap between the two data sets. 108 genes identified by subtractive hybridization were also found to be enriched in LCM DRG neurons, in contrast to 51 subtraction linked genes that were enriched in the cerebellum. Several factors may have contributed to the latter discrepancy, including the inherent differences between approaches mentioned above, misaligned ESTs and/or the presence of alternative transcripts not accounted for in the microarray probe set. Taking these limitations into consideration, we decided to take advantage of the availability of these two distinct experimental data sets to identify common intrinsic transcriptional regulators in the PNS.

PNS enriched transcription factor binding sites

Next we sought to determine whether our DRG enriched data sets exhibited signatures of regulation by specific factors. We hypothesized that if a TF was preferentially active in DRG neurons, its binding sites would be overrepresented in the promoters of DRG enriched genes (Fig. 3A). Consensus binding sites from TRANSFAC 10.2 were combined with known conserved 5’ sequence motifs (Xie et al., 2005) to create a list of 1042 transcription factor binding sites (TFBSs). Custom software was then used to match each TFBS against the promoter regions of all DRG enriched genes with genomic annotations (847 from subtractive hybridization and 1075 from the microarray). A promoter region was defined by the sequence of DNA 1000 bp upstream and 200 bp downstream of the transcription start site (TSS). A background list of 41,116 Entrez Gene IDs with TSS annotations was used to determine whether representation of binding sites was non-random. Significance was determined by a Fisher Exact Test followed by a correction for multiple comparisons. As in the case of the network analysis, a third promoter scan was also carried out on the list of cerebellar enriched genes from the microarray, and any common matches were filtered from those matching the DRG enriched data sets.

The promoter analysis yielded 132 TFBSs that were overrepresented in the DRG enriched data sets (Table S4), including 43 TFBSs that matched both sets (Figs. 3B, C). This high degree of overlap between the two datasets suggests that there may in fact be constitutive DRG transcriptional regulators that do not change postnatally and specify cell function independently of downstream injury mechanisms.

High content analysis of TF overexpression on neurite outgrowth

By combining differentially expressed TFS from the subtractive hybridization and microarray data sets with the network and TFBS enrichment analyses, we identified 32 transcription factors that were identified by at least two techniques (Table 1). Given the many differences in function between DRG and cerebellar granule neurons, it is highly unlikely that a large fraction of these 32 factors would play a role in neurite outgrowth. It was our belief, however, that this set constituted a good starting point for an overexpression screen.

To provide support for the idea that CGNs are a reasonable surrogate for other CNS neurons important in regeneration we examined the expression levels of the factors in Table 1 using publicly available GNF Mouse GeneAtlas V3 microarray data (Lattin et al., 2008). This analysis revealed that of the 32 TFs, 10 were enriched more than 2-fold in adult mouse DRG compared to cerebral cortex,
and 11 were enriched more than 2-fold compared to hippocampus (Table S5). By contrast, only 2 TFs were enriched in cortex and 1 in the hippocampus compared to DRG. Considering that our approach sought to identify factors that differed in their activity in addition to expression, these data are consistent with the assertion that our method selects for PNS vs CNS enrichment.
We transfected P7–10 mouse cerebellar granule neurons (CGNs) with full length TF cDNAs with the goal of identifying factors that had an effect on neurite outgrowth. A majority of the TFs were available from our laboratory’s mammalian expression open reading frame collection from Open Biosystems. TFs that were not available within our lab were obtained from the plasmid-sharing repository, Addgene (http://www.addgene.com). Using the Amaxa Nucleofector Shuttle system we analyzed 25 of the 32 TFs identified in Table 1. Successfully transfected neurons were identified by simultaneous transfection of a reporter gene (pMAX-eGFP, Amaxa). The amount of TF to reporter gene ratio was optimized such that co-transfection rates typically yielded >70%, similar to other larger high content analysis screens.
conducted by our laboratory (Blackmore et al., 2010). CGNs were allowed to grow for 48 h after which they were fixed and immunostained for neuronal specific BIII tubulin (Fig. S4A). Image acquisition and neurite length data was automatically measured using the Cellomics ArrayScan VTI Neuronal Profiling Algorithm, allowing unbiased quantification analysis of neuronal image data (Figs. S4A–C). In each experiment, neurite length for at least 100 eGFP positive neurons was quantified across 6 replicate wells. We included KLF7, a known promoter of neurite outgrowth (Moore et al., 2009) as a positive control, and 3 negative “control” genes (OXR1, Oxr1 and SparcII) that we used consistently in our hands not to affect neurite outgrowth. To facilitate comparisons across multiple and repeated experiments, we used mean total neurite length relative to the average of the three control genes for each TF (Fig. S4D). Although several TFs produced consistent trends in this screen, no single factor was found to significantly affect CGN neurite outgrowth after one-way ANOVA post-hoc tests. While this could suggest that DRG intrinsic TFs simply have no bearing on CNS neurite outgrowth, another interpretation of this data is that CNS neurons lack additional factors that are necessary for these TFs to successfully drive transcription of key growth promoting genes.

Table 1

<table>
<thead>
<tr>
<th>Transcription factor</th>
<th>Symbol</th>
<th>SUB</th>
<th>MA</th>
<th>NS</th>
<th>NM</th>
<th>PS</th>
<th>PM</th>
<th>RT</th>
<th>SCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruppel-like factor 7</td>
<td>Klf7</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CNTRL</td>
</tr>
<tr>
<td>Signal transducer and activator of transcription 3</td>
<td>Stat3</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>DRG Yes</td>
</tr>
<tr>
<td>Interferon regulator factor 1</td>
<td>Irf1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>DRG Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast cancer 1, early onset</td>
<td>Brca1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CCAAT/enhancer binding protein zeta</td>
<td>Cebpz</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATA binding protein 3</td>
<td>Gata3</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>CNTRL Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun oncogene</td>
<td>Jun</td>
<td></td>
<td>X</td>
<td>X</td>
<td>DRG Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myelocytomatosis oncogene</td>
<td>Myc</td>
<td></td>
<td>X</td>
<td>X</td>
<td>DRG Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal transducer and activator of transcription 6</td>
<td>Stat6</td>
<td></td>
<td>X</td>
<td>X</td>
<td>DRG Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream transcription factor 1</td>
<td>Usf1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>CNTRL Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMAD family member 4</td>
<td>Smad4</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal transducer and activator of transcription 1</td>
<td>Stat1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>DRG Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activating transcription factor 3</td>
<td>Atrx</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Basic helix-loop-helix family, member e40</td>
<td>Bhlhe40</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Hyposia inducible factor 1, alpha subunit</td>
<td>Hif1a</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Glucocorticoid receptor</td>
<td>Ntrc1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steroidogenic factor 1</td>
<td>Nr5a1</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-rel reticuloendotheliosis viral oncogene homolog A (avian)</td>
<td>Rela</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFFV proviral integration 1 (PU.1)</td>
<td>Sgf1a</td>
<td></td>
<td>X</td>
<td>X</td>
<td>CNTRL Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream transcription factor 2</td>
<td>Usf2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromodomain helicase DNA binding protein 4</td>
<td>Chd4</td>
<td></td>
<td>X</td>
<td>X</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early B cell factor 1</td>
<td>Ebf1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Fmr1 methyltransferase domain containing 2</td>
<td>Fmrd2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>IKAROS family zinc finger 1</td>
<td>Ikz1f</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Myeloid zinc finger 1</td>
<td>Mzf1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>RD RNA-binding protein</td>
<td>Rdhp</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ring finger protein 38</td>
<td>Rnf38</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Hepatoma-derived growth factor, related protein 2</td>
<td>Hdgfp2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Kruppel-like factor 6</td>
<td>Klf6</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>PC4 and SFRS1 interacting protein 1</td>
<td>Psip1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Replication factor C (activator 1) 1</td>
<td>Rfc1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Transcription factor AP4</td>
<td>Tcfap4</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>YY1 transcription factor</td>
<td>Yy1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

STAT3 is constitutively enriched and active in DRG neurons

Signal transducer and activator of transcription 3 (STAT3), found to be enriched in DRG neurons by subtractive hybridization, microarray (4.2-fold) as well as by the network and TFBS enrichment analyses, produced the largest increase in neurite outgrowth in the overexpression screen and was thus identified as a top candidate for further study. To probe STAT3 expression and activity in vivo, untreated autologous DRG, cerebellum and cerebral cortex lysates were probed for total STAT3 by Western blotting using neuronal specific βIII-tubulin as a loading control. The alpha (89 kDa) and beta (80 kDa) isoforms of STAT3 were detected at higher levels in DRG compared to the two CNS tissues (Fig. 4A).

Immunohistochemical analysis revealed strong, specific staining of STAT3 in DRG sections and virtually no staining in autologous cerebellum sections (Figs. S2A–B). STAT3 immunoreactivity was observed in cerebellar cultures, however, only in GFAP positive astrocytes (Fig. S2E), consistent with previous reports (Xia et al., 2002). Within the DRG, STAT3 is selectively expressed in neurons, as evidenced by Hoechst staining of non-neuronal cells in the nerve rootlet (Figs. 4C–E), as well as co-labeling with NeuN (Figs. 4F–H) and with identical co-expression with the TF ISL1 (Fig. S2C). STAT3 expression in both the cytoplasm and in the nucleus of DRGs is consistent with previous observations in other cell types (Figs. 4F–H and data not shown) (Liu et al., 2005).

To determine whether the STAT3 was constitutively active in DRGs, we made use of a phospho-specific antibody that recognizes tyrosine 705 (Y705). Phosphorylation of this residue is necessary for STAT3 dimerization and transcriptional activity, and is used extensively to assay STAT3 activity (Levy and Lee, 2002). Probing lysates of DRG, cerebellum and cortex using the Y705 antibody revealed STAT3 activation in DRG neurons, but not in cerebellum nor in cortex (Fig. 4B). Interestingly, only the alpha isoform (89 kDa) was found to be phosphorylated, suggesting differential roles for the alpha and beta isoforms in DRG neurons. Labeling of sections with the Y705 antibody revealed a neuronal specific signal in the DRG (Figs. 4L–J) but not cerebellum (Fig. S3). Unlike total STAT3 staining, however, Y705 staining was observed only in nuclei. Additionally, only 60% of ISL1 positive neurons exhibited detectable levels of Y705 phosphorylated STAT3, with a large range of intensities observed among cells.
To further characterize the activity of the JAK/STAT pathway in DRG neurons, we performed real-time PCR on 84 related genes using Percoll purified DRG neurons and cerebellar granule neurons (Table S6). Genes assayed include upstream activators of the STATs such as GP130 (also known as IL6ST), JAK1–3, STAT1–6, as well as downstream targets of the STATs such as IRF1. Four housekeeping genes (β-glucuronidase, HSP90, GAPDH and β-actin) were used to normalize threshold cycles. In total, 19 genes were found to be significantly enriched in DRG neurons (corrected p-value < 0.05), including several genes regulated by and gene products that regulate STAT3 (Fig. 4M). These results suggest the existence of constitutive STAT3 pathways that are enriched in DRG neurons.

To further probe the idea that STAT3 is a constitutive regulator of DRG cell function, we examined the distribution of 126 STAT TFBSs (TCCCRGAAR) within the promoter regions of 126 DRG enriched genes. Individual STAT consensus matches for genes identified by the subtraction (green hatches) and microarray (red hatches) are shown below. Many sites cluster within 200 bp upstream of the transcription start site (TSS).

Fig. 4. STAT3 is constitutively enriched and active in PNS neurons but not CNS neurons. (A–B) Representative Western blot of lysates from P7–10 mouse dorsal root ganglia, cerebellum, and cerebral cortex probed for (A) total STAT3 and (B) Y705 phosphorylated STAT3. Neuronal specific βIII-tubulin was used as a loading control. (C–E) STAT3 co-localizes with NeuN but not Hoechst positive Schwann cells in the nerve root. (C) NeuN, (D) total STAT3, (E) the nuclear dye Hoechst. (F–H) High magnification confocal micrograph showing (F) NeuN, (G) total STAT3, and the (H) merged image showing co-localization. (I) DRG neurons express nuclear Y705 phosphorylated STAT3 constitutively. (J–L) High resolution confocal micrographs showing (J) Islet 1 staining neuronal nuclei, (K) Y705 STAT3 and (L) the merged image. Scale bars: (C,D,E,I), 100 μm; (F,G,H,J,K,L), 10 μm. (M) The relative expression of 84 JAK–STAT pathway members in P7–10 dorsal root ganglia and cerebellum was probed using real-time PCR. Multiple factors that regulate and are regulated by STAT3 activity were found to be enriched in DRGs, suggesting the presence of at least one PNS specific STAT3 signaling pathway. (N) Distribution of the STAT consensus binding motif (TCCCRGAAR) within the promoter regions of 126 DRG enriched genes. Individual STAT consensus matches for genes identified by the subtraction (green hatches) and microarray (red hatches) are shown below. Many sites cluster within 200 bp upstream of the transcription start site (TSS).
elements (REs) were found to be within 400 hundred base pairs upstream of the TSS (Fig. 4N), a phenomenon widely observed in promoter studies (Tharakaraman et al., 2008), which is also consistent with a role for STAT3 in DRG cellular function.

STAT3 activity enhances CNS neurite outgrowth

Since we had evidence that STAT3 promotes neurite outgrowth in the CNS (Fig. S4D), and evidence that STAT3 may be a constitutive regulator of function in DRG neurons (Fig. 4M) we conducted a second, targeted neurite outgrowth experiment to determine whether STAT3 activity would augment neurite outgrowth in cerebellar granule neurons. Postnatal day 7–10 CGNs were transfected with eGFP, wildtype full length STAT3 alpha (Fig. 5A), or constitutively active A662C/N664C STAT3-C (Bromberg et al., 1999), and allowed to grow for 48 h on poly-d-lysine or poly-d-lysine with laminin. Because STAT3 expression was virtually undetectable in non-transfected CGNs, we were able to use the pan-STAT3 antibody to identify transfected neurons (Fig. 5B), using non-transfected wells to establish a threshold for background fluorescence.

Transfection of STAT3-C, but not wildtype STAT3, resulted in a significant (20%, \(p < 0.01 \)) increase in total neurite outgrowth over GFP controls (Fig. 5C). This effect was not mirrored by a significant increase in the fraction of neurons with neurites, suggesting that it reflects a change in outgrowth rather than survival (data not shown). These data suggest that STAT3 activity, presumably through the transcriptional regulation of specific gene targets, increases the rate of growth of postnatal CNS neurons.

One of these potential targets is interferon regulatory factor 1 (IRF1), a transcription factor induced by JAK–STAT signaling and specifically STAT3 (Harroch et al., 1994). We identified IRF1 as a candidate DRG intrinsic factor in Table 1, owing to its presence in the subtraction as well as the network and TFBS analyses. Furthermore, our real-time PCR experiment revealed IRF1 mRNA to be nearly 9-fold enriched in DRG neurons. This result is supported by Allen Spinal Cord Atlas (http://mousespinal.brain-map.org) in-situ hybridization data from postnatal day 4 mice that clearly shows an enrichment of IRF1 mRNA in the DRG compared to neighboring spinal cord. To determine whether IRF1 activity affects neurite outgrowth, we overexpressed wildtype mouse IRF1 in addition to a constitutively active form of the factor fused to a VP16 activation domain. We observed that the constitutively active form significantly enhanced neurite outgrowth by 27% compared to the wildtype factor (\(p < 0.05 \), Fig. 5D). Together these findings support the idea that TF activity is key to the process of axon regeneration and that overexpression screens may miss many important factors due to the absence of key signaling molecules and co-activators.

Discussion

PNS intrinsic transcription factors

Our systems-based discovery effort identified TFs predicted to be enriched and active in postnatal PNS neurons. Lists of DRG enriched genes relative to CGN were generated by two independent expression analyses were scanned for the overrepresentation of TF interaction networks and TFBSs. Combining these approaches, we identified 32 TFs, many of which were identified neither by subtraction nor by microarray methods, suggesting preferential activity in the PNS rather than enrichment of expression levels. Interestingly, analysis of microarray data on expression of these TFs in DRG compared to cortex and hippocampus showed a strong bias for higher expression in the DRG, arguing that our combined bioinformatic approach successfully identified TFs enriched in the PNS.

Our list of 32 candidate TFs contains several previously known regeneration associated gene (RAG) products, including STAT3, JUN, ATF3, and KLF6. STAT3 is phosphorylated in the axons and somas of DRG neurons after peripheral nerve injury (Sheu et al., 2000). JUN expression is elevated in PNS neurons after injury, regulates other regeneration associated genes, and acts to promote regeneration after injury (Herdegen et al., 1991; Pradervand et al., 2004; Raivich et al., 2004). ATF3 is induced after peripheral nerve injury (Tsujino et al., 2000) and is intrinsically linked to the growth rate of adult DRG neurons (Seijffers et al., 2007). KLF6 was recently identified as a

![Fig. 5. Exogenous expression of constitutively active STAT3 increases outgrowth of CGNs.](Image)

(A) Western blot of COS7 cells transfected with GFP and full length STAT3 cDNA stained for total STAT3 and β-tubulin. (B) Confocal micrograph showing a single cerebellar granule neuron transfected with the STAT3 construct. After transfection, cultures were probed with antibodies for β-tubulin (red) and total STAT3 (green). Scale bar: 50 μm. (C) Mean total neurite length of CGNs transfected with GFP, wildtype STAT3 and constitutively active STAT3-C, and grown on poly-d-lysine for 48 h. Only STAT3-C significantly improved outgrowth. At least 100 STAT3 positive neurons were quantified in each experiment, \(n = 4 \). Error bars = 95% confidence intervals. Significance determined by one-way ANOVA followed by Dunnett’s post-hoc test. ** = \(p < 0.01 \). (D) Overexpression of a constitutively active form of IRF1, IRF1-VP16, increased mean total neurite outgrowth compared to the wildtype form of the gene. IRF1 is a major downstream target of STAT3. Significance was determined by an unpaired two-tailed Student’s T-test. * = \(p < 0.05 \).
promoter of mouse cortical neuron outgrowth from a screen conducted in our laboratory (Blackmore et al., 2010; Moore et al., 2009). The identification of these factors in part validates the bioinformatics approaches used to construct Table 1.

Seven transcriptional regulators stand out due to their identification in multiple approaches listed in Table 1. These include STAT3, JUN, CCAAT/enhancer binding protein zeta (C/EBPζ), breast cancer 1 (BRCA1), interferon regulator factor 1 (IRF1), the myelocytomatosis viral oncogene (MYC), and STAT6. Each of these factors has been shown to physically interact or transcriptionally regulate at least one of the other factors. IRF1 is a major downstream target of the STAT family of TFs and is regulated by STAT3 (Harroch et al., 1994). JUN is a binding partner of STAT3, and the two cooperate in the induction of several genes, including c–α2-macroglobulin (Ito et al., 1989) and vasoactive intestinal polypeptide (Lewis et al., 1994). MYC is a target of both IRF1 (Dror et al., 2007) and STAT3 (Kiuchi et al., 1999), and can cooperate with STAT3 in the transcription of CDC25A (Barre et al., 2005). MYC binds to the promoters of STAT3 (Zeller et al., 2006) and STAT6 (Fernandez et al., 2003). C/EBPζ, whose own transcriptional activity can be enhanced by BRCA1 (MacLachlan et al., 2000), can bind to JUN and enhance the activity of the AP-1 complex (Ubeda et al., 1999). The high degree of co-operation among these TFs, many of which are regeneration associated, and our finding that many of them are enriched in DRGs (Fig. 4M) suggests they may contribute to a larger transcriptional complex regulating intrinsic growth ability.

We performed a real-time PCR analysis of 84 genes related to the JAK–STAT pathway to shed light on possible PNS specific networks. Although our goal was to determine the possibility and extent of constitutive STAT signaling in the postnatal PNS, this group of genes contained 10 of 32 TFs from Table 1. The majority of these factors (6/10) were confirmed to be enriched in the PNS by real-time PCR, whereas the remaining four factors were found to be enriched in CGNs (n = 3, corrected p = 0.05). These four factors were identified by the network and TFBS enrichment analyses only, suggesting the possibility of transcriptional repression, rather than activation, in DRG neurons.

High content analysis of TF overexpression in CGNs

We performed an overexpression screen of 25 transcription factors from Table 1 in cerebellar granule neurons. Although we identified trends within this data set leading to further experiments characterizing STAT3, no single factor was found to significantly increase or decrease neurite outgrowth. Notably, we found that KLF7 had qualitatively similar effects on CGN neurite outgrowth as in cortical neurons (Moore et al., 2009), but its effects on neurite length in CGNs was not as robust as in cortical neurons (±15% in CGNs vs. ±50% in cortical neurons), possibly reflecting cell specific mechanisms for promoting/decreasing axon growth. Interestingly, KLF6 was not sufficient to promote CGN neurite outgrowth, suggesting distinct growth mechanisms in different populations of CNS neurons. ATF3, which has been shown to mediate intrinsic growth capacity in DRG neurons, produced a reduction in CGN neurite outgrowth, furthering the idea that PNS enriched regeneration associated factors do not necessarily recapitulate their effects in CNS neurons.

STAT3 as a constitutive regulator of DRG neuron function

Given that STAT3 was the single largest modulator of neurite outgrowth in the overexpression screen, we conducted a series of follow-up experiments to both characterize STAT3 expression and to determine the effect of its activity on neurite outgrowth. STAT3 is vital for the survival of DRG neurons during murine development (Alonzi et al., 2001), and may play a role in the induction of key genes after a conditioning lesion (Qiu et al., 2005), although this report uses an inhibitor of JAK2 (AC490) as a proxy for STAT3 loss of function. We report here that STAT3 is both enriched and preferentially active in DRG neurons compared to CNS neurons, and that STAT3 Y705 is phosphorylated constitutively, independent of a peripheral injury. Furthermore, overexpression of constitutively active STAT3 leads to a significant increase in CNS neurite outgrowth not attributable to an increase in survival.

Immunohistochemical and western blot analysis of postnatal DRG neurons consistently showed enrichment of STAT3 compared to cortex and cerebellum in vivo. The only time STAT3 expression was observed in postnatal CNS tissues was in GFAP positive cerebellar astrocytes in vitro (Fig. 5E). This data is consistent with published reports showing induction of STAT3 in astrocytes after a lesion to the entorhinal cortex (Xia et al., 2002). Although adult cortical neurons appear not to express STAT3, even after an injury, several reports have shown expression and phosphorylation of STAT3 in the retina after an optic nerve crush or lens injury, and after treatment with cilary neurotrophic factor (CNTF) (Leibinger et al., 2009; Muller et al., 2007; Park et al., 2004). Furthermore, these reports show both total and phospho-STAT3 in the ganglion cell layer (GCL) after injury, suggesting that retinal ganglion cells may have a distinct molecular mechanism governing regeneration.

STAT3 activates more than 100 downstream targets, several of which play key roles in neuronal outgrowth. Small proline rich protein 1a (SPRR1A), which is activated in response to IL-6 and GP130 (Pradervand et al., 2004), is upregulated in the PNS after a conditioning lesion and is necessary for the outgrowth of DRG axons from explants in vitro (Bonilla et al., 2002). WNT5A, which has been shown to regulate axon specification through PKC (Zhang et al., 2007), and p21/Cip1/Waf1, which can increase neurite outgrowth 3-fold through the inhibition of Rho-kinase (Tanaka et al., 2002), are also direct targets of STAT3 (Coqueret and Gascan, 2000; Fujio et al., 2004). Another downstream target of STAT3 is IRF1, which we showed independently to be enriched and potentially active in DRG neurons compared to CGNs. We further report here that the overexpression of IRF1 containing a VP16 activation domain significantly enhanced neurite outgrowth, suggesting a potential mechanism that is consistent with STAT3–C’s effects. This is to our knowledge the first report both of preferential IRF1 expression in the PNS and a role for the factor in CNS neurite outgrowth.

Although STAT3 is constitutively expressed and activated in DRG neurons, its mRNA is upregulated as much as 3-fold after injury (Schwaiger et al., 2000). Furthermore, STAT3 is phosphorylated on Y705 subsequent to injury, first in distal axons and then in the cell bodies (Lee et al., 2004). That STAT3 can upregulate GP130 (O’Brien and Manolagas, 1997) suggests the potential for a positive feedback loop that relies on basal levels of STAT3. Our findings are consistent with the idea that STAT3 may serve as an early response factor in the cascade of events leading to successful axon regeneration.

We have demonstrated that overexpression of an active form of STAT3 enhances CGN neurite outgrowth by 20%. While this effect is clearly significant, it may be possible to improve STAT3 mediated neurite outgrowth in future experiments. STAT3 is known to synergize with many of the factors in Table 1, suggesting that combinations of TFs could be overexpressed to boost CNS neurite outgrowth. Furthermore, exogenously expressed STAT3 staining in CGNs differs from endogenous DRG patterns, with notably less nuclear localization (data not shown). Assuming that STAT3 is acting in the nucleus to increase growth, it may be possible to alter nuclear import pathways to boost target gene expression. To enter the nucleus STAT3 must first bind to α3 (Liu et al., 2005), ζ5 or α7 importin (Ma and Cao, 2006). The STAT3/α-importin complex binds to β1 importin, which shuttles STAT3 into the nucleus. While we observed no differences in the level of α importin mRNA between DRG and CGN by microarray analysis, β1 importin mRNA is more than 3-fold upregulated in DRG neurons. This is consistent with a report showing that β1 importin mRNA is present at high levels in DRG axons and is locally translated after a peripheral injury (Hanz et al., 2003).
In summary, we took a systems approach to identify TFs preferentially enriched and active in PNS neurons, which have the capacity to extend axons through myelin rich environments and to regenerate after injury. Unexpectedly, high content analysis of TF overexpression in primary CNS neurons revealed that none of these factors could individually produce a significant effect on neurite outgrowth. However, constitutively active forms of STAT3 and its target, IRF1, are sufficient to promote neurite growth in the same model, confirming that transcription factor activity is a driving force of functional outcomes, at least in vitro. Furthermore, these results suggest that combinatorial TF transfection (of co-activators, for example) could be a valuable potential therapeutic approach for tackling CNS injuries.

Experimental methods

Construction of directionally cloned cDNA libraries

Approximately 1 μg of P7–10 wildtype C57BL/6 mouse cerebellum and DRG poly(A) + purified mRNA was directionally cloned into the Stratagene Lambda Zap-CMV XR vector (Agilent Technologies) and packaged into lambda particles using Gigapack III Gold Packaging extracts (Stratagene). Mass library-wide exclusion of the phagemid resident in the lambda library was carried out using reagents and protocols provided by the Lambda Zap-CMV XR vendor (Stratagene), yielding a pCMV-Script EX mammalian-expression phagemid library.

DRG library subtraction

Excised mammalian-expression libraries in pCMV-Script EX were used to carry out subtractions (DRG–cerebellum) essentially as previously described (Bonaldo et al., 1996). In brief, purified double-stranded plasmid from the DRG and cerebellum libraries were converted to single-stranded circles by the sequential enzymatic action of Gene II (Invitrogen) and Exo III. Subtractions are carried out by hybridization of 100 ng of DRG single-stranded circles to complementary cerebellum PCR products. Recovered single-stranded DNA was desalted, concentrated and used to generate partially double-stranded plasmids which were electroporated into DH10B bacterial cells to generate the subtracted library (Bonaldo et al., 1996).

Library sequencing

Diluted library glycerol stocks were inoculated in deep 96-well blocks (Qiagen’s HiSpeed Miniprep kit) filled with 1.4 mL of 2×YT media + 50 μg/ml kanamycin and shaken at 310 rpm for 16 h at 37 °C. The Qiagen BioRobot 3000 was used to purify and elute library sequences in 100 μl of EB, after which the average concentration of three wells was determined (usually 300 ng/μl). Sequencing reactions were carried using the BigDye Terminator 3.1 kit (Applied Biosystems), then sealed and shipped to the W.M. Keck Center at the University of Illinois (http://www.biotech.uiuc.edu.centers/Keck) for sequencing.

Microarray analysis

CEL data from laser capture microdissected DRG neurons (Peeters et al., 2006) was generously provided to us by Pieter Peeters of Johnson & Johnson. Microarray data from P11 mouse cerebellum using the same platform (Affymetrix Murine Genome U74AV2) was obtained by our lab separately and has been described previously (Tapans-Castillo et al., 2010).

All samples were normalized using the Robust Multi-Array average method (Irizarry et al., 2003) using the software package RMA Express (http://rmaexpress.bmbolstad.com). Normalized intensities were pooled in Spotfire DecisionSite (TIBCO Software, Inc.) and mean DRG/cerebellum ratios were calculated. Significance was determined by an unpaired two-tailed Student’s T-test, followed by a correction of p-values for multiple comparisons using the Benjamini–Hochberg False Discover Rate (FDR) technique (Hochberg and Benjamini, 1990). Significantly upregulated genes (i.e. >2-fold differentially regulated, p<0.01) were included in further analyses.

For the analysis of GNF GeneAtlas V3 data, the data matrix file containing gcrma computed expression measures was downloaded from GEO (accession: GSE10246), whereupon replicate values were averaged. DRG/cortex and DRG/hippocampus ratios were calculated for each probe set, and that value was then averaged for each gene (if multiple probe sets were available) and Log2 transformed.

Gene ontology clustering

1086 UniGene IDs from the subtraction along with 1252 and 892 Affymetrix probe IDs upregulated in DRGs and cerebellum respectively were imported into DAVID (Dennis et al., 2003) (http://david.abcc.ncifcrf.gov). Annotations overrepresented in the two DRG enriched gene lists were then determined using the EASE algorithm, which uses a modified Fisher’s Exact Test to determine significance. A list of all annotations and their associated p-values was determined for the cerebellar enriched microarray list for comparison. DAVID requires that a reference gene list be used to establish a background for annotations. For the subtraction, the default DAVID Mus musculus list was used, whereas for the microarray a list of all genes represented on the U74AV2 gene chip was used.

Network analysis

Subtraction and microarray gene lists were imported into Metacore (GeneGo) and converted into Metacore network objects. List genes were then connected to each of 1773 transcriptional regulators in the Metacore database using the “Transcriptional Regulation” tool. To determine the significance of connectivity between a gene list and a given transcription factor, Metacore considers the problem as a selection without replacement. In this test the intersection between a user’s list and a generic network is assumed to follow a hypergeometric distribution and the probability that a subset of a network of size n to include r genes from a user’s gene list is:

\[
P(r, n, N) = \frac{C^r_r C^{N-r}_{n-r}}{C^N_n} = \frac{R!(N-R)!}{N!} \frac{n!(N-n)!}{(n-r)!} \frac{1}{(N-R-n+1)!}.
\]

Where R is the total number of genes with the user’s list and N is the total number of genes in the database. From this equation, the mean and dispersion of the distribution can be calculated and used to generate a p-value, equivalent to the probability that the intersection of two randomly selected subsets of N would have a size n or larger. In the case of a transcription factor centered network, Metacore builds an arbitrary network of size n around the factor and then compares the network with the genes in R. Metacore p-values were corrected for multiple comparisons using the Benjamini–Hochberg technique.

Promoter analysis

The transcriptional start site (TSS) for each gene from the subtraction and microarray list was determined from Entrez Gene...
Neurons were cultured in de
Sigma-Aldrich) alone or with 4
μ Packard plates (Perkin-Elmer) coated with 100
18 mm glass coverslips (Carolina Biological Supply) or 96-well

DecisionSite for further analysis (Tibco, Inc.). The ratio of reporter gene to plasmid DNA (1:6) typically yielded co-transfection rates of ≥70%.

Western blotting

Freshly dissected whole DRGs, cerebellum and cortex from P7–10 C57BL/6 mice were suspended in lysis buffer containing 1% NP-40, 200 μM sodium vanadate and 50 μM sodium fluoride, followed by sonication. Dilutions of each sample were run on an 8–15% gradient gel (Lonza, Inc.) and probed for BII tubulin to determine neuronal loading. Densitometric analysis was then used to adjust sample loading for a second gel. STAT3 and BII tubulin signals were read simultaneously using the Odyssey infrared imager (LI-COR, Inc.).

Immunohistochemistry

P7–10 C57BL/6 mice were perfused with saline followed by 4% formaldehyde solution, whereupon their DRG and cerebellum were removed. The tissue was then post-fixed overnight, followed by equilibration in 30% sucrose. The cerebellum and DRGs of the same mouse were mounted into the same OCT block and sectioned by cryostat at a thickness of 20 μm and places on slides. Because formaldehyde masks the Y705 antigen, we used a simple antigen retrieval technique described previously (Jiao et al., 1999), consisting of a 30 min incubation in 25 mM sodium citrate at 80 °C. Sections were incubated for 2 h in blocking/permeabilization buffer containing 20% normal goat serum (Invitrogen), 0.2% Triton X-100, 18 mg/ml l-lysine and 10 mg/ml BSA (Sigma-Aldrich). Slides were then incubated in primary antibody overnight and then secondary antibody for a second night, followed by mounting with ProLong Gold anti-fade reagent (Invitrogen). Sections were imaged by confocal microscopy.

Real-time PCR

Dorsal root ganglia and cerebellum from P7–10 wildtype C57BL/6 mice were removed using standard protocols. Dissociated DRG cells were purified by layering dissociated cells on top of a 28% isotonic Percoll solution, as described previously (Tucker et al., 2006), followed by centrifugation for 10 min at 400 g and 4 °C. To determine purity, neurons were cultured for 18 h and then fixed and stained for anti-neurofilament-medium (160 kDa), followed by quantification using the Cellomics KineticScan plate reader. For real-time PCR, cell pellets were resuspended in Buffer RLT from the Qiagen RNeasy micro kit. One microgram of total RNA was then reverse transcribed into cDNA using the “ReactionReady” First Strand cDNA Synthesis Kit from Superarray (SA Biosciences), followed by incubation at 95 °C to hydrolyze any remaining RNA. The diluted first strand product was then combined with SYBR-Green master mix from Superarray and aliquoted into Jak/Stat RT7® Profiler plates, containing primers for 84 genes of interest and 5 housekeeping genes, as well as genomic contamination and quality controls. PCR reactions were run using an Eppendorf MasterCycler Realplex (Eppendorf AG), and threshold cycles were determined by the machine. After the reaction was complete, a melt curve was determined to confirm the presence of a single PCR product. The fold change for a gene of interest (GOI) using a housekeeping gene (HKG) for normalization was determined using the “ΔΔCt” method (Livak, 1997). Significance was determined using an unpaired two-tailed Student’s t-test on normalized ΔCt values, followed by Benjamini–Hochberg correction for multiple comparisons. **STAT3 outgrowth assay**

1 million cells per condition were resuspended in 100 μl mouse neuron Nucleofector solution (Amaxa GmbH) and 3 μg of plasmid...
DNA was added. Transfected plasmids include: wildtype STAT3 alpha isoform (3593588, OpenBiosystems), A662C/N664C mutant “STAT3-C”, and pmaxGFP as a negative control. Cells were electroporated using program G-013 on the Amaxa Nucleofector device, after which 900 µl of Neurobasal media with added KCL (described earlier) was added to each cuvette to dilute the Nucleofector solution and improve survival. Cells were then plated at a density of 20–30,000 cells per 96-well, and processed as described above; with the exception that anti-STAT3 was used to identify transfected cells.

STAT3 outgrowth assay

Wildtype Irf1 (3600525, OpenBiosystems) was compared to a mutant Irf1 construct containing an N-terminal VP16 activation domain fusion. Total neurite length was determined as described in the high content neurite outgrowth screen.

The biological function of some human transcription factor binding motifs varies with position relative to the transcription start site. Nucleic Acids Res. 36, 2777–2786.

