
Kinase/phosphatase overexpression reveals pathways
regulating hippocampal neuron morphology

William J Buchser, Tatiana I Slepak, Omar Gutierrez-Arenas, John L Bixby and Vance P Lemmon*

The Miami Project to Cure Paralysis, Departments of Pharmacology and Neurological Surgery, and Neuroscience Program, University of Miami, Miller School of
Medicine, Miami, FL, USA
* Corresponding author. The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., LPLC, Rm 4-16, Miami,
FL 33136-1060, USA. Tel.: þ 1 305 243 6793; Fax: þ 1 305 243 3921; E-mail: vlemmon@miami.edu

Received 4.11.09; accepted 12.6.10

Development and regeneration of the nervous system requires the precise formation of axons and
dendrites. Kinases and phosphatases are pervasive regulators of cellular function and have been
implicated in controlling axodendritic development and regeneration. We undertook a gain-of-
function analysis to determine the functions of kinases and phosphatases in the regulation of
neuron morphology. Over 300 kinases and 124 esterases and phosphatases were studied by high-
content analysis of rat hippocampal neurons. Proteins previously implicated in neurite growth,
such as ERK1, GSK3, EphA8, FGFR, PI3K, PKC, p38, and PP1a, were confirmed to have effects in our
functional assays. We also identified novel positive and negative neurite growth regulators. These
include neuronal-developmentally regulated kinases such as the activin receptor, interferon
regulatory factor 6 (IRF6) and neural leucine-rich repeat 1 (LRRN1). The protein kinase N2 (PKN2)
and choline kinase a (CHKA) kinases, and the phosphatases PPEF2 and SMPD1, have little or no
established functions in neuronal function, but were sufficient to promote neurite growth. In
addition, pathway analysis revealed that members of signaling pathways involved in cancer
progression and axis formation enhanced neurite outgrowth, whereas cytokine-related pathways
significantly inhibited neurite formation.
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Introduction

In neural development, neuronal precursors differentiate,
migrate, extend long axons and dendrites, and finally establish
connections with their targets. The initial steps of neurite
formation and the subsequent specification of axons and
dendrites have been widely studied. Clinical conditions such
as spinal cord injury, traumatic brain injury, stroke, multiple
sclerosis, Parkinson’s disease, Huntington’s disease, and
Alzheimer’s disease are often associated with a loss of axon
and/or dendrite connectivity and treatment strategies would
be enhanced by new therapies targeting cell intrinsic mechan-
isms of axon elongation and regeneration.

Phosphorylation controls most cellular processes, including
the cell cycle (Vandenheuvel and Harlow, 1993), proliferation
(Behrens et al, 1999), metabolism (Nimmo and Cohen, 1978),
and apoptosis (Xia et al, 1995). Neuronal differentiation,
including axon formation and elongation, is also regulated by a
wide range of kinases and phosphatases (reviewed in Arimura

and Kaibuchi, 2007). For example, the non-receptor tyrosine
kinase Src (Entrez symbol: SRC) is required for cell adhesion
molecule-dependent neurite outgrowth (Ignelzi et al, 1994)
and the phosphatase Calcineurin (PPP3CA) is required down-
stream of calcium waves to transiently inhibit the extension of
Xenopus spinal neurons (Lautermilch and Spitzer, 2000). In
addition to individual kinases and phosphatases, signaling
pathways like the MAPK, growth factor signaling, PIP3,
cytoskeletal, and calcium-dependent pathways have been
shown to impinge on or control neuronal process development
(Lazarovici et al, 1987; Kuo et al, 1997; Morooka and Nishida,
1998; Wu and Cline, 1998; Huang and Reichardt, 2003;
Menager et al, 2004; Chen et al, 2006).

Recent results have implicated GSK3 (Dill et al, 2008) and
PTEN (Park et al, 2008) as therapeutically relevant targets in
axonal regeneration after injury. However, these and other
experiments have studied only a small fraction of the total
kinases and phosphatases in the genome. Because of recent
advances in genomic knowledge, large-scale cDNA production,
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and high-throughput phenotypic analysis, it is now possible to
take a more comprehensive approach to understanding the
functions of kinases and phosphatases in neurons.

We performed a large, unbiased set of experiments to
answer the question ‘what effect does the overexpression of
genes encoding kinases, phosphatases, and related proteins
have on neuronal morphology?’ We used a ‘high-content
analysis’ approach to obtain detailed results about the specific
phenotypes of neurons. We chose to study embryonic rat
hippocampal neurons because of their stereotypical develop-
ment in vitro (Dotti et al, 1988) and their widespread use in
studies of neuronal differentiation and signaling. We trans-
fected over 700 clones encoding kinases and phosphatases into
hippocampal neurons and analyzed the resulting changes in
neuronal morphology.

Many known genes, including PP1a, ERK1, p38, ErbB2,
atypical PKC, Calcineurin, CaMK2, FES, IGF1R, FGFR, GSK3,
PDK1, PIK3, and EphA8, were observed to have significant
effects on neurite outgrowth in our system, consistent with
earlier findings in the literature. Importantly, we also identified
a number of genes not previously known to affect process
growth. Combining the morphological data with information
about protein sequence and molecular pathways allowed us to
connect families of related proteins with novel functions in
neurite development, and to implicate some signaling path-
ways in the regulation of neurite growth for the first time.
Overall, our results provide a more complete picture of the
kinases and phosphatases regulating neuronal growth, and
suggest a number of testable hypotheses regarding the
signaling pathways involved.

Results

A large-scale gain-of-function analysis in primary
mammalian neurons

Electroporation-mediated transfection was used to overexpress
kinases and phosphatases in embryonic rat hippocampal
neurons. These neurons quickly adhere to laminin-coated
plates, initiating neurite growth within hours (Esch et al,
1999). By 48 h, neurons typically possess several minor
neurites and one major neurite (likely to develop into the
axon) (Dotti et al, 1988). We marked transfected neurons by
cotransfection with mCherry, a red fluorescent protein (RFP)
(Shaner et al, 2004); transfection efficiency averaged 17.3%
(95% confidence interval (95 CI), 16.6–18%) of the bIII-
tubulin-positive neurons. Only transfected neurons were
analyzed; neurons were defined as transfected (RFPþ ; Figure
1B and D, arrowheads) if their RFP intensities were greater
than 2 s.d. above the mean of non-transfected controls (Figure
1E and F). Control experiments demonstrated that 480% of
RFPþ neurons were cotransfected with the gene of interest
(data not shown). Except when measuring the percent of
neurons with neurites (%Neuriteþ ), we considered neurons
for further analysis only if they had at least one neurite
410mm (Neuriteþ ; Figure 1A and B) to avoid measuring
potentially non-viable neurons (Figure 1C and D).

We obtained quantitative data for many cellular and
neuronal morphological parameters from each neuron
imaged. These included nuclear morphology (nuclear area

and Hoechst dye intensity), soma morphology (tubulin
intensity, area, and shape), and numerous parameters of
neurite morphology (e.g. tubulin intensity along the neurites,
number of primary neurites, neurite length, number of
branches, distance from the cell body to the branches, number
of crossing points, width and area of the neurites, and longest
neurite; Supplementary Figure 1). Other parameters were
reported on a ‘per well’ basis, including the percentage of
transfected neurons in a condition (%RFPþ ), as well as the
percentage of neurons initiating neurite growth (%Neuriteþ ).
Data for each treatment were normalized to the control (pSport
CAT) within the same experiment, then aggregated across
replicate experiments.

Validation of normalization and use of transfected
neurons

We constructed a linear model incorporating experimental and
treatment terms to test the validity of our normalization and
our method for selecting transfected neurons (Figure 2C). The
main sources of variance were the treatment (overexpression
of kinases and phosphatases) and various aspects of
experimental technique (animals, cells, time of prep, transfec-
tion, etc).

NTLij ¼ C þ Ei þ Tj þ ETij þ eij

where C¼constant, E¼experiment effects, T¼treatment
effects, and e¼error.

The linear models fit the data appropriately, with coeffi-
cients of RFP� 0.62, 0.59 and RFPþ 0.87, 0.84 (for raw and
normalized data models, respectively). The models were
analyzed to determine the respective contributions of the
treatment term (representing changes specifically because of
overexpression), and the experimental term (representing
noise). When analyzing cells defined as non-transfected, the
experimental (noise) contribution predominated, both for raw
and normalized data (Figure 2C). However, for cells defined as
transfected (RFPþ ), the treatment effect increased (to 34%)
and the noise contribution decreased (to 32%), even for raw
data. For normalized data from transfected cells, the treatment
contribution increased to 51%, whereas the experimental
contribution became negligible (6%). We concluded that it
was appropriate to analyze the RFPþ neurons, and that
normalization significantly reduced the noise in the screen,
revealing the effect of cDNA overexpression. Notably, the
interaction term maintained a sizable contribution in our
model (not shown), suggesting that a non-linear model would be
able to explain more of the variance than our simple linear one.

Neurite number is regulated separately from
neurite elongation

Correlations among the 19 normalized parameters were
analyzed for neurons transfected with all kinase and phos-
phatase clones (Figure 2A). Primarily, this approach was taken
to simplify the number of variables. Five groups of parameters
as well as four single parameters emerged from the correlation
analysis. Parameter groups comprised clusters of red intensity
measures, soma geometry measures, neurite crossing, branch-
ing and neurite area, and neurite length measures (defined in
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Supplementary Figure 1). On the basis of this analysis, the
primary variables that define the neurite morphology are
primary neurite count, neurite average length, and average
branches. Interestingly, primary neurite count was not well
correlated with neurite length or branching (Figure 2A). The

Pearson correlation coefficient (r2) between the number of
primary neurites and the average length of the neurites was
0.332 (95 CI, 0.247–0.412), and between the number of
primary neurites and average branching was 0.227 (95 CI,
0.146–0.302). In contrast, the correlation coefficient of average

Figure 2 Morphological parameters reduced and normalization validated. (A) Clusters of correlated parameters were established by correlation between pairs. Braces
indicate groups of closely related parameters. (B) Bar chart of correlation coefficients with primary neurite count. Bar chart depicts the correlation coefficient with 95%
confidence intervals. (C) Generalized linear model developed to validate the population of cells to analyze. Top, Equation representing the explained variance from
combinations of the experimental (E) effect and treatment (T) effect. Parameters were fit either as unnormalized raw values (Raw) or using relative change/normalized
(Norm). We also considered the difference between untransfected (RFP�) and transfected (RFPþ ) neurons. By fitting the model to the equation NTLij for explained
variance, very high fits were obtained for each group. The contribution from the treatment¼signal (black bars) increased with transfected/normalized data, whereas the
contribution from experimental variations¼noise (white bars) decreased to 6% when using normalized, transfected data. Source data are available for this figure at
http://www.nature.com/msb.

Figure 1 Hippocampal neurons assayed for neurite growth after transfection. (A–D) Hippocampal neurons growing on laminin, divided along two axes, producing four
categories: Neuriteþ (A, B), neurons that have neurites, and Neurite� (C, D), neurons without. (A, C) RFP�, neurons that are not expressing red fluorescent protein
(RFP) reporter. (B, D) RFPþ neurons are expressing reporter, and thus are likely to be expressing the plasmid of interest. (B, D) RFPþ neurons are identified by red
cell bodies and arrowheads. (E, F) Scatter plots of RFP intensity from over 60 000 neurons in one experiment, plotted against nuclear (Hoechst) intensity. Each marker
indicates one neuron. (E) RFP was added to the transfection as a reporter gene, and in (F) no reporter was added. Black horizontal line is transfection criterion.
Scale bar¼100mm.
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branching with neurite average length was 0.670 (95 CI,
0.626–0.712) (Figure 2B). The primary neurite count was well
correlated with neurite total length (NTL). This is expected as
NTL is defined as (average length� primary neurite count)
(Supplementary Figure 1).

There are at least two possible explanations for the low
correspondence between primary neurite number and either
neurite length or branch number. First, the number of primary
neurites in embryonic hippocampal neurons could be very
stable and imperturbable. Indeed, primary neurite number did
not vary a great deal across the entire data set (2.13±1.14
s.d.). However, we identified a group of genes (see below) that
significantly perturbed primary neurite count, rendering this
explanation unlikely. Therefore, a more likely possibility is
that signaling mechanisms underlying the neurite number
determination are different than those controlling length/
branching of the neurites. A mechanism for this phenomenon
has recently been examined (Shelly et al, 2010).

Phenotypic perturbation after overexpression
of kinases and phosphatases

Neurons were transfected with each of 724 cDNA plasmids,
from the NIH Mammalian Genome Collection (MGC) (Gerhard
et al, 2004), mapping onto 622 different human and mouse

genes. As 130 of these genes were orthologs, 492 unique genes
were screened. After image/tracing validation, a number of
clones were removed from the analysis (because of poor
tracing or low cell number), leaving 449 unique genes (plus
five control genes) in the final analysis.

To identify relevant functional classes of neuronal pheno-
types, three key parameters were considered—primary neurite
count, average length, and branching. Changes in these
parameters resulting from gene overexpression were examined
using hierarchical clustering (Figure 3). Of the 454 unique
genes (including controls), 59 had statistically significant
positive effects in neurite count and length, and are grouped on
the left side of the heat map in green. Only nine genes
increased both the primary neurite count and the average
neurite length, whereas 23 genes increased neurite average
length. An additional 32 genes increased the primary neurite
count, but with little or no increase in length. Only a few of the
genes assayed were significant determinants of both neurite
length and neurite count. It is likely that these genes control
general neurite initiation, whereas the other phenotypic classes
regulate more specific cellular programs. A majority of genes
with significant effects (92) were inhibitory to neurite growth.

We identified several genes that significantly altered neurite
growth. For example, choline kinase a (CHKA) promoted
positive growth enhancement for all parameters after over-

Figure 3 Phenotypic perturbation after kinase and phosphatase overexpression in hippocampal neurons. Overexpression of genes coding for particular kinases and
phosphatases significantly perturbed neuronal morphology. (A) Dendrogram produced from hierarchical clustering sorted the genes by phenotype. (B) Blocks of color
indicate significance and direction of effect for neurite count and neurite average length, where green indicates values significantly above control, red significantly below,
and black not significant. (C–E) Heat map of genes that are significantly different from control, with three different parameters, neurite count (C), average length (D), and
average branches (E), where green indicates a relative (normalized) increase, and red a decrease in value. Values for red and green are as follows, neurite count�0.25
to 0.3, neurite length�0.47 to 0.51, and branch points�0.51 to 1.66. Genes not significantly different than control were originally clustered above (I), indicated by ‘ns.’
(F–K) Six representative images of neurite growth with tubulin immunofluorescence (grayscale) and nuclear (blue), cell body (white), and neurite tracing (yellow/green)
overlays. The Entrez Gene symbol is listed below the image (left to right: choline kinase, origin recognition complex like, TGF-b receptor, control (pSport-CAT), inositol
polyphosphate-5-phosphatase, PKC iota). Black triangles indicate a gene’s location in the cluster and heat map. (L) Cartoons of stereotyped neurite growth phenotype
for each example image. Scale bar¼100mm. Source data are available for this figure at www.nature.com/msb.
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expression in hippocampal neurons (Figure 3F). Origin
recognition complex subunit 4-like and the TGF-b receptor 2,
increased the length of hippocampal neuron processes (Figure
3G and H). Origin recognition complex was previously
reported to regulate dendrite development (Huang et al,
2005). Inositol polyphosphate phosphatase (INPP5B) over-
expression increased the number of primary neurites and led
to decreased neurite length (Figure 3J). Although these genes
had enhancing effects on laminin, they had little effect on
neurite growth on the artificial substrate polylysine (Supple-
mentary Figure 2). The strongest inhibitory genes produced
very short neurites with only a few neurons initiating growth
(e.g. atypical PKC iota, PRKCI; Figure 3K). These inhibitory
genes did not generally affect survival (Supplementary Figure
3). Overall, we identified several neurite growth activators,
and many neurite growth inhibitors in hippocampal neurons.
The full table of results is provided in Supplementary Table 1.

Effects of known neurite-regulatory genes
on neuronal morphology

We selected a group of genes that were tested in our
experiments and had been previously implicated in neuron
development, neuritogenesis, axon elongation, or neuronal
polarity. Table I reports the results of overexpression of these
genes in hippocampal neurons for four parameters: nuclear
intensity (increases reflect nuclear condensation; Marcus et al,
1979), primary neurite count, neurite average length, and
average branching. The latter three parameters were chosen
because they defined the three distinct groups of neurite
variables. Genes that had significant effects (after correction
for multiple comparisons) are indicated. As expected, the
protein kinase A catalytic subunit (PRKACA) and the atypical
PKCs (PRKCI, PRKCH) strongly perturbed the neuron’s
phenotype. Overexpression of these kinases was sufficient to
inhibit neurite growth. PKA activity has previously been
suggested to affect growth on laminin negatively (Bixby,
1989), but also has been linked to positive regulation of neurite
growth (Kao et al, 2002). It is possible that our (inhibitory)
results with PKA reflect mislocalization because of expression
of the catalytic subunit in the absence of the regulatory
subunit. Note that although overexpression of PKA inhibited
neurite length, it did not increase the nuclear intensity,
suggesting cell death was not the cause (Table I). To determine
whether PKA’s effect was due to its kinase activity, we
compared expression of wild-type PRKACA to that of an
inactive mutant. Transfection of PRKACA led to strong
inhibition of neurite growth (Figure 4B), whereas transfection
of a kinase-dead mutant (K73A; Figure 4C) did not alter
neuronal morphology (compare Figure 4A). Therefore,
PRKACA’s kinase activity was required for its inhibition
of neurite growth.

Neuronal morphology is altered by expression
of members of kinase and phosphatase families

Related proteins are often involved in similar neuronal
functions. For example, families of receptor protein tyrosine
phosphatases are involved in motor axon extension and

guidance in both Drosophila and in vertebrates (Desai et al,
1997; Stepanek et al, 2005), and a large family of Eph receptor
tyrosine kinases regulates guidance of retinotectal projections,
motor axons, and axons in the corpus callosum (Brennan et al,
1997; Klein, 2001; Mendes et al, 2006). We therefore asked
whether families of related genes produced similar phenotypes
when overexpressed in hippocampal neurons. Our set of genes
covered 40% of the known protein kinases (Supplementary
Table 2), and many of the non-protein kinases and phosphatases.

Genes were sorted into one of five categories before the
sequence alignment to produce distinct trees: protein kinases
(Figure 5A), non-protein kinases (Figure 5B), protein phos-
phatases (Figure 5C), other phosphatases (Figure 5D), and
other genes (Figure 5E). Phylogenetic trees were used to
determine amino-acid similarity and infer evolutionary dis-
tance. Related families were thus clustered into branches and
subbranches. Genes identified as protein kinases (Manning
et al, 2002; Caenepeel et al, 2004) were aligned using the
amino-acid sequences of the kinase domains only, whereas
other genes were aligned by their entire sequences. The
alignment successfully clustered the genes into known
families. For example, the protein kinase tree (Figure 5A)
matched the organization of previously identified protein
kinase groups (Manning et al, 2002; Caenepeel et al, 2004).
Also, 81% of the genes with obvious siblings (i.e. PPP2CA,
PPP2CB) were linked to their sibling in the trees.

To establish the neuronal phenotype for individual genes
within families, we plotted the functional data for NTL on
markers overlying the trees (Figure 5). The neuronal response
observed after the overexpression of individual kinases and
phosphatases was diverse across gene families. Expression of
most kinase and phosphatase genes reduced the length of the
neurites compared with controls (Figure 5, red markers). Some
families were particularly inhibitory. For example, BMP/acti-
vin receptors, PKAs/PKCs (PRKACx, PRKCx), and most
protein serine/threonine phosphatases (PPP branch) inhibited
neurite extension.

Gene families commonly exhibit redundant function
(Urrutia et al, 1997; Xian and Zhou, 2004). Redundant gene
function has often been identified when two or more knock-
outs are required to produce a phenotype (Heber et al, 2000).
Our technique allowed us to measure whether different
members of gene families had similar (potentially redundant)
or distinct effects on neuronal phenotype.

To determine whether groups of related genes affect
neuronal morphology in similar ways, we used sequence
alignment information to construct gene clusters (Figure 6A).
Genes were clustered at nine different thresholds of similarity
(called ‘tiers’). The functional effect for a particular parameter
was then averaged within each cluster of a given tier, and non-
parametric statistics were performed to determine the sig-
nificance of the effect. Results from the neurite initiation
parameter are shown in Figure 6B. Here, the giant cluster
containing every gene has an average near control level and is
colored white (Figure 6B, bottom tier, labeled 1 on the left). As
the threshold is increased, clusters of fewer but more closely
related genes are constructed, and their mean effect on the
phenotype is displayed by the color of the rectangles in
the heat map (red¼decrease, green¼increase, diamonds and
asterisks indicate significance).
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We analyzed results for this cluster analysis with the three
key neurite parameters (average neurite length, primary
neurite count, and average branching) in addition to the
frequency of neurite initiation (from the percent of neurons
with axons or dendrites). Genes that perturbed each of these
phenotypes are grouped in Figure 6C. Eight families, most with
only a few genes, produced significant changes for one or two
parameters. A diverse family of non-protein kinases had a
positive effect on neurite outgrowth in three of the four
parameters analyzed. This family of kinases consisted of a

variety of enzymes, mostly sugar and lipid kinases, with the
strongest effects coming from IRF6 and CHKA.

Molecular pathways revealed by neuronal
phenotypes

Over the past 10–20 years, literally hundreds of neuronal
growth and regeneration-associated genes have been identi-
fied (e.g. Table I). However, determining which of these genes

Table I Known neural growth regulators

1 2 3 4 Common name Symbol Note Citations

AKT2 AKT2 Inhibition correlated with decrease Namikawa et al (2000)
CAMK1d CAMK1D Inhibiting decreased length Wayman et al (2004)
CAMK1g CAMK1G

� +++ ++ +++ CAMK2a CAMK2A Slowed dendritic growth, mediates
GABA induced neurite growth

Wu and Cline (1998);
Borodinsky et al (2003)

� �� � CAMK2d CAMK2D
+++ c-Src kinase CSK Inhibits neurite growth in PC12 Dey et al (2005)

EGF receptor EGFR Activity-mediated inhibition Koprivica et al (2005)
ERK1 MAPK3 Activated form induces outgrowth Kolkova et al (2000);

� + ERK2 MAPK1 Robinson et al (1998)
EphA4 EPHA4 Better regeneration in EphA4 KO Goldshmit et al (2004)
EphA7 EPHA7 Better recovery after EphA7 reduction Figueroa et al (2006)

++ �� � EphA8 EPHA8 Induces MAPK activity to promote Gu et al (2005)
��� +++ ErbB2 ERBB2 Neuregulin promotes through erbB2 Bermingham-McDonogh et al (1996)

FAK PTK2 GF+Integrin4FAK4PC12 growth Ivankovic-Dikic et al (2000)
+++ �� FES FES Accelerates NGF-induced PC12 Shibata et al (2003)
+++ FGF receptor1 FGFR1 Overexpression-promoted outgrowth Hausott et al (2008); Lin et al (1996)

��� FGF receptor4 FGFR4
Fyn related (GTK) FRK Induces NGF-independent PC12 growth Anneren et al (2000)
FYN FYN Fyn-mice lack NCAM neurite growth Beggs et al (1994)

�� � GSK3A GSK3A Has distinct function from below Yoshimura et al (2005);
Lee et al (2007)

GSK3B GSK3B Inhibition of GSK3b promotes Yoshimura et al (2005)
�� � IGF1 receptor IGF1R Receptor is essential for Hipp polarity Sosa et al (2006)

ILK ILK Overexpress Wt ILK stimulates growth Ishii et al (2001)
JNK2 MAPK9 JNK required for axon formation Oliva et al (2006)

+ JNK3 MAPK10
MARK2 MARK2 Ectopic express led to loss of axons Chen et al (2006)
MEK3 MAP2K3 MEK required for TrkB growth Atwal et al (2000)
MEK5 MAP2K5

++ ++ ORC4L ORC4L Knockdown-reduced branching Huang et al (2005)
PAK4 PAK4 Membrane targeting increase growth Daniels et al (1998)

� �� PDK1 PDPK1 Activated by PI3K Alessi et al (1997)
PIK3 PIK3R1 PI3K inhibitors reduce axon elongation Menager et al (2004);

Da Silva et al (2005)
��� � ��� PKA catalytic A PRKACA Inhibit PKA stops forskolin growth Kao et al (2002);

Chijiwa et al (1990)
+++ PKA catalytic B PRKACB
++ � � PKC eta PRKCH Cell polarity and Par complex Chen et al (2006); Lin et al (2000)
+ �� �� PKC iota PRKCI
++ RAF1 RAF1 Activated raf–axon elongation Markus et al (2002)

SAD kinase BRSK1 Required for polarization Kishi et al (2005)
++ SRC SRC SRC KO impairs growth Ignelzi et al (1994)

p35 CDK5R1 Inhibits PAK Nikolic et al (1998)
+ �� p38 a MAPK14 Required for PC12 outgrowth;

inhibiting enhances growth
Morooka and Nishida (1998);
Myers et al (2003)

� � � p38 b MAPK11
p38 d MAPK13
p38 g MAPK12

� �� Calcineurin PPP3CA Ca++ waves inhibit through Calcn Lautermilch and Spitzer (2000)
�� + +++ PP1a PPP1CA Dephosphorylates PKA Tang et al (2003)

+++ PTEN PTEN PTEN KO retinal regrowth after crush Park et al (2008)
PTPRa PTPRA Drosophila Desai et al (1997)
SHP2 PTPN11 NGF growth inhibited by mutant Shp2 Chen et al (2002)

In all, 48 kinases and phosphatases previously reported for their involvement in neural process development and polarity. Columns of the table refer to intensity of the
Hoechst nuclear dye (1), primary neurite count (2), neurite average length (3), and average branching (4). Effect for each parameter (+,� Po0.1, ++,�� Po0.05,
+++,���Po0.01, corrected by Benjamini–Hochberg), compared with controls. Genes are identified by their common name, official Entrez symbol, and official full
name. Genes are arranged with the kinases on the top, and the phosphatases below.
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are primary regulators of process development has been
challenging. It is possible to refine the understanding of these
genes with existing pathway information. One hurdle is that
most genes with pathway annotations are members of multiple
pathways. Of the 550 genes we successfully screened, 46% had
pathway annotations, and of those, 66% were members of
more than one pathway. Of the latter, half were members of
four or more pathways. We performed pathway analysis for 79
different pathways in 24 categories using Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa et al, 2004) (http://

www.genome.jp/kegg/pathway.html) (Figure 7A and B). This
analysis was displayed in the form of a heat map (Figure 7C).
KEGG provided the classification of main categories
(Figure 7A), subcategories (Figure 7E), and the pathways
(Figure 7B). Genes were then placed in these pathway ‘bins.’
The color of the bin indicates the strength and the direction of
the effect observed (Figure 7C and D). Pathways involved in
proliferation of specific cancers, dorso-ventral axis formation,
cytokine signaling, and ErbB signaling each had genes that
were significant in their ability to modify neuronal morpho-

Figure 5 Families of kinases and phosphatases modify neurite outgrowth. Screened genes were aligned by sequence then displayed as phylogenetic trees,
representing evolutionarily related proteins. Genes were separated into five primary categories, protein kinases (A), non-protein kinases (B), protein phosphatases (C),
non-protein phosphatases (D), and others (E). Protein kinases were further subdivided into seven families (based on kinase domain sequences). Branch lengths on the
trees represent the amino-acid change from parent to sibling and therefore the evolutionary ‘distance’ between genes. Labels beside the branches are the official Entrez
Gene symbol. Circular markers were overlaid atop the trees, with the color of the marker indicating either no change in neurite length from control (white), an increase
(green) or decrease (red). KLF4 and KLF7 are transcription factors that are regulators of neurite growth (Moore et al, 2009; Blackmore et al, 2010), and were included in
the screen as additional controls. Source data are available for this figure at www.nature.com/msb.

Figure 4 Overexpression of PKA catalytic subunit a inhibits neurite growth. Its kinase activity is responsible for the phenotype change. (A–C) Hippocampal neurons
transfected with control (mCherry, A), PKA catalytic subunit a (PRKACA, B), and kinase-dead mutant of PKA (PRKACA K73A, C). Arrowheads indicate PRKACA-
transfected neurons; arrows indicate neurons expressing the kinase-dead mutant of PKA. The neurons’ processes are visualized by bIII-tubulin (green), and mCherry
coexpression (red). Scale bar¼100 mm.
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logy (Figure 7C). In addition, groups of pathways (as
determined by KEGG pathways) such as the cancer pathways
and amino-acid metabolism pathways had significant effects
(Figure 7D). Summary data for the most significant results
are shown for neurite length, branching, red intensity (from
RFP cotransfection, does not equate with the level of expres-
sion of cotransfected gene), and soma area. The pathways most
involved in producing the observed phenotypes included cancer,
apoptosis, axis formation, adherens junctions, neuroactive
ligand–receptor interactions, and ErbB signaling (Figure 7G).
Complete results of pathway analysis are shown in Supple-
mentary Figure 4. Pathway cluster analysis showed that
individual genes that were members of groups (from known
pathways) had similar activities when overexpressed in
hippocampal neurons. In particular, pathways involved in
cancer cell proliferation potentiated neurite extension and
branching. Manipulations of genes in these pathways may be
important to enhance axon or dendrite growth after injury.

Discussion

In a large-scale screen using high-content analysis of primary
mammalian neurons, overexpression of distinct classes of
kinases and phosphatases significantly perturbed neurite

growth, primary neurite count, and branching. In all, 59 genes
increased process development, whereas almost 20 genes were
inhibitory. Of the inhibitory genes, the catalytic subunit of PKA
was of particular interest because of its very strong effect on
inhibiting neurite growth, and we demonstrated its kinase
activity to be necessary for its effect. We tested 48 genes
previously documented to be active in neurite growth,
inhibition, and polarity. Of these, PP1a, ERK1, p38a, ErbB2,
PKC eta and iota, calcineurin, CaMK2, FES, IGF1R, FGFR,
GSK3a, PDK1, PIK3, and EphA8 had the strongest effects.

Our functional data provide substantial information about
how groups of genes/proteins might relate. Through novel
analyses, we determined that several families of evolutionarily
conserved proteins had similar effects on neurite growth. In
particular, calcineurins, CDC14s, IP3Kinases, cytokines, dia-
cylglycerol kinases, a host of sugar and lipid kinases, and the
atypical PKCs had similar effects across family members,
suggesting the possibility of redundant function. If these
proteins were individually targeted for loss-of-function experi-
ments, it would be unlikely that single deletions would lead to
a phenotype. Some of these gene families (the non-protein
kinases, for example) have no known functions in neurite
development, and represent novel targets for the control of
neurite formation and extension.

Figure 6 Bioinformatics identify putative families of active genes. (A) Genes overexpressed in hippocampal neurons, arranged by phylogenetic relationships (as in
Figure 5, but ‘unrolled’) where the most closely related genes are next to each other. The five trees are preserved in the five sections (columns) of the graph. (B) Cluster
heat map for the frequency of neurite initiation. At the bottom (labeled 1), all of the genes are combined into one large cluster, where there was no net effect on neurite
growth (white). Going up from the bottom, genes are grouped in smaller, more focused families, with 3, 9, 21, 45, 88, 199, and 347 families per tier (row of the heat map).
Each rectangle represents a family of genes (corresponding to the labels in A) that has a mean effect that reduced (red), or increased (green) neurite initiation. Non-
parametric statistics were performed on each family, where diamonds indicate values for spiked bootstrap (^Pp0.05, ^^Pp0.01). Asterisks indicate significance
corrected by Benjamini–Hochberg (*Pp0.05, **Pp0.01, ***Pp0.001). (C) Compilation of significant families for four parameters: primary neurite count, frequency
of neurite initiation, neurite average length, and average branching. Colored rectangles demarcate the extent of the family (for instance CDKN3, PTEN, PTP4A1,
CDC14A&B), the color the direction and magnitude of the effect, with labels giving the common names for the genes. Note that the large family of non-protein kinases
(from FUK to PFKL) has smaller nested families with even greater effects. The calcineurins (PPP3CA&B), and the kinases IRF6, CHKA, and CDK5R1, had the greatest
ability to perturb neurite growth. Source data are available for this figure at www.nature.com/msb.
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Pathways provide a conceptual framework to understand
molecular dynamics in cells. We analyzed hundreds of genes
for functional relationships, and found that several pathways
implicated in cancer progression and dorsal-ventral pattern
formation contain kinases and phosphatases with substantial
abilities to alter neurite morphology.

Novel growth-associated genes

Our study uncovered a number of genes, including devel-
opmentally active genes, not previously linked to the regula-
tion of axon/dendrite growth. For example, activin receptor 1
(ACVR1) is involved in Xenopus axis formation (Hemmati-
Brivanlou and Melton, 1992) and downregulated during
peripheral nerve regeneration (Morita et al, 1996). Both
ACVR1 and ACVRL1 (and their isoforms) reduced neurite
growth in our assays. IRF6 is also developmentally regulated
during early development (Hatada et al, 1997) and its
expression potentiated neurite growth in hippocampal neu-
rons. CHKA, which strongly increased hippocampal neurite
growth and neurite initiation, is an essential gene (Wu et al,
2008) that has been observed in nerve endings (synapto-
somes) (Spanner and Ansell, 1979). Elucidating the mechan-

ism through which CHKA influences neurite growth will be a
fruitful future direction of study. SBK1 (SH3-binding kinase 1)
is a novel and mostly uncharacterized serine/threonine kinase
that is highly expressed in the brain (Nara et al, 2001). Two
mouse clones of this gene with different UTRs inhibited neurite
growth in our assays. Another serine/threonine kinase,
microtubule-associated serine/threonine kinase-like (MASTL),
which inhibited neurite outgrowth, is known to interact with
microtubules. A non-protein kinase, neural leucine-rich repeat
1 (LRRN1), is highly expressed in early somitic myoblasts
(Haines et al, 2005) and inhibited neurite growth when
overexpressed.

Neurite growth activators were very rare in the AGC arm of
the protein kinase tree, with the exception of protein kinase N2
(PKN2), known to be activated by Rho GTP, and regulate cell
cycle proteins such as Cdc25B (Schmidt et al, 2007). Another
AGC kinase, ribosomal protein S6 kinase/mitogen and stress
activated kinase/p90rsk (RPS6KA4) inhibited neurite growth.
RPS6KA4 has been shown to be required for CREB and ATF
phosphorylation in fibroblasts (Wiggin et al, 2002), as well as
being involved in cAMP and insulin-related proliferation
(Coulonval et al, 2000). It has previously been implicated in
regulating CAM-mediated neurite growth (Wong et al, 1996).

Figure 7 Neural process development is affected by known pathways, including cancer pathways. Pathway annotations from the KEGG grouped genes into 79
pathways. (A) KEGG categories. (B) KEGG pathway names. (C) Heat map for pathway’s effect on neurite average length as indicated by color (red, decrease; white, no
change from control; green, increase). (D) The 24 pathway subcategories, with heat map representing average effects of all genes in the category. (E) Names of
pathway subcategories. (F) Legend for heat map. Symbols atop the heat map indicated significance from non-parametric statistics, where diamond is Pp0.05 by spiked
bootstrap, and square is Pp0.05 by bootstrap. (G) After the analysis was repeated for four of the other parameters, the most significant pathways were compiled. They
included three cancer pathways, the closely related ErbB signaling pathway, and dorsal-ventral axis formation pathway. Source data are available for this figure at
www.nature.com/msb.
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Two protein phosphatases, both members of the myotubu-
larin family, significantly decreased neurite growth. Myotu-
bularin related 2 (MTMR2) is known to be involved in myelin
neuropathies, but is currently thought to act in Schwann cells,
not neurons (Bolis et al, 2005). SET-binding factor 1 (SBF1) a
pseudo-protein phosphatase, has been seen to decrease
proliferation after its forced expression in fibroblasts (Firestein
and Cleary, 2001). We observed SBF1 to decrease neurite
growth after overexpression in hippocampal neurons.

Other genes with strong effects have either less known
about them, or no obvious connection to neural function or
pathways. The serine threonine kinase protein serine kinase
H1 is involved in Golgi maintenance (Brede et al, 2003) and its
overexpression enhanced growth. CMPK1 (cytidine monopho-
sphate UMP-CMP kinase 1) a kinase involved in pyrimidine
synthesis, inhibited neurite growth when overexpressed. The
protein phosphatase protein phosphatase 1K was inhibitory,
whereas protein phosphatase EF hand calcium-binding
domain 2 (PPEF2) and sphingomyelin phosphodiesterase 1
acid lysosomal (SMPD1) were strong growth promoters in our
screen, but the underlying mechanisms are unclear.

Candidates for future study from genetic
and pathway analyses

Our phylogenetic analysis identified several families, such as
the chemokine ligands, protein tyrosine phosphatases, and a
large group of non-protein kinases, with members that
strongly perturbed neurite outgrowth. Several of these were
expected, especially the Calcineurins, Cdc14s, PI3K (Da Silva
et al, 2005), and atypical PKCs. Other families were not
expected to affect neurite growth, but did. These include a
group of sugar kinases, NADK, and others. Not every member
of this family had the same effect, but these enzymes generally
potentiated neurite growth over control (surprising consider-
ing the neurons were growing on laminin, which strongly
promotes neurite growth in the control state (Baronvanever-
cooren et al, 1982)). These non-protein kinases will be
interesting to study to determine their functions in neuronal
process development.

Pathway analysis revealed that genes in several cancer
pathways were highly active. This is not unexpected, as
growth of neurons is tied to the same cascades that lead to
proliferation of cancer cells (Nakagawara, 2001). These
pathways dominate the analysis, either because many of their
genes were selected for study, and have been previously
studied, or that these signals (as activated by overexpression)
are quite strong compared with other pathways. Finally, the
signal transduction pathways ‘neuroactive ligand–receptor
interaction’ and ‘cytokine–cytokine receptor interaction’ have
members that produced strong effects in opposite directions
(Supplementary Figure 4, purple blocks). The study of these
complete pathways will be an important undertaking for
future analysis.

Comparison with other screens

Recently, three groups have used RNAi to test the necessity of
various genes on neurite development or cell migration, which
is likely to involve overlapping mechanisms (Enomoto et al,

2001; Maness and Schachner, 2007). Loh et al (2008) used the
SH-SY5Y cell line in an siRNA screen of 750 kinases, many of
which were also assayed in our experiments. Over half of the
‘hit’ siRNAs targeted genes in the tyrosine kinase or tyrosine
kinase-like families. The intersection of hit genes from Loh
et al, and genes from our study is listed in Supplementary Table
3. ERBB2, RYK, PRKAB1 enhanced neurite growth after
overexpression in our assays and reduced neurite length after
knockdown in the Loh screen. Conversely, PRKCI, PKN1,
PDPK1 NEK3, MASTL inhibited neurite growth after over-
expression in our assays and enhanced axon growth after
knockdown in the Loh screen. Overexpression/knockdown of
other genes (CDK9, FES, STK38L) led to the same phenotype in
both screens. An siRNA screen by Sepp et al (2008) used
Drosophila primary neurons to study the disruption of neural
phenotypes in a genome-wide screen. They found that siRNAs
for over 100 genes significantly perturbed neuronal pheno-
types, leading to reduced elongation, excessive branching, loss
of fasciculation, or blebbing (Sepp et al, 2008). The orthologs
of four of the active genes from Sepp et al were also screened in
our experiments. Two of these, ZAP70 and HTATIP, were
weakly, but not significantly, inhibitory to neurite growth. Our
analyses saw stronger effects (shorter neurites and more
condensed chromatin) with the overexpression of LIMK2 and
LRRN1 (see also Supplementary Table 3). Finally, Simpson
et al (2008) performed an RNAi screen of kinase and
phosphatases genes, assaying the ability of a monolayer of
cells from a breast cancer cell line to heal after wounding. They
found siRNAs targeting several genes that either potentiated or
inhibited the migratory ability of the cells.

Comparing the results of these siRNA screens with each
other, it is interesting to note that not a single gene appeared in
all three. In fact, only three genes were hits in two of the three
screens: BCAR3, LIMK1, and the JNK kinase MAP2K7. The
lack of overlap in these RNAi screens supports the notion that
such large-scale knockdown experiments require special
analysis of the raw data for proper interpretation (Sacher
et al, 2008). In our own unpublished experiments using siRNA
and shRNA approaches, we have found it much more difficult
to knock down protein expression in primary neurons than in
cell lines. This is consistent with reports using transgenic mice
expressing shRNAs; knock down in the CNS is less effective
than in other tissues (Sasaguri et al, 2009). The slow and
variable loss of protein expression using RNAi in neurons
makes it a problematic strategy in a screening context. A recent
high-content analysis of a genome-wide RNAi screen found
that the majority of siRNAs have off-target effects (Collinet
et al, 2010). Consequently, using RNAi in primary neurons as a
screening approach will require much better validated libraries
and assays that use novel approaches to allow protein
expression to be knocked down before neurite growth starts
(Davare et al, 2009). It is therefore critical to use alternative
methods, such as overexpression.

Conclusion

Our studies have identified a large number of kinases and
phosphatases, as well as structurally and functionally defined
families of these proteins, that affect neuronal process
formation in specific ways. We have provided an analytical
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methodology and new tools to analyze functional data, and
have implicated genes with novel functions in neuronal
development. Our studies are an important step toward the
goal of a molecular description of the intrinsic control of
axodendritic growth. Downstream validation studies will be
important to perturb the function of other members of the
signaling cascades we have implicated, and to examine the
functions of these genes in other neuronal types.

Materials and methods

Plasmid cDNA library

A glycerol stock cDNA library from the NIH MGC (Gerhard et al, 2004)
in 96-well format was purchased from Open Biosystems (Thermo-
Fisher, Huntsville, AL) that included IRAT (human) and IRAV (mouse)
clones. The library was replicated and the original and daughter plates
stored in �80 degree freezers, sealed with foil tape (Corning Costar
6570, Lowell, MA). The Gene Ontology (http://amigo.geneontology.
org/) was consulted to determine an up-to-date list of kinases and
phosphatases. Gene ontologies for ‘Kinase Activity,’ and ‘Phosphoric
Ester Hydrolase activity’ were used to generate a list of kinases,
phosphatases, and interacting genes. A custom program written on the
Qiagen BioRobot-3000 (Germantown, MD) picked clones from the
glycerol stock plates into the kinase-phosphatase sublibrary, which
totaled nine 96-well plates. During the cherry-picking process, a set of
10–12 plates were thawed, wiped, uncapped, and the foil cover
carefully removed. Disposable tips were used to inoculate media in
deep-well 96-well blocks. During the process, glycerol stocks for
mCherry (Shu et al, 2006) were also picked and inoculated into
specified control wells on the plate. Other wells were left empty, to
facilitate non-transfected controls and to allow other clones to be
tested.

Plasmid preparation

QIAprep 96 Turbo BioRobot Kit (Qiagen 962141) was used to produce
transfection quality plasmid. Briefly, two deep-well blocks from the kit
were filled with 1.4 ml Terrific Broth (Invitrogen 22711, Carlsbad, CA)
with 150 mg/ml ampicillin (Invitrogen 11593) in each well. A 96-pin
replicator tool (Nalge Nunc 250520, Rochester, NY) was used to
inoculate the thawed glycerol stock plate into fresh media. Plates
were incubated for 20–24 h at 371C, shaking at 300 r.p.m. The plates
were spun down serially such that the pellets were overlaid and
concentrated. The pellets were resuspended in Qiagen’s ‘P1’ buffer,
and the manufacturer’s instructions were followed. Elution was
performed at room temperature, with 120ml of endotoxin-free water.

Plasmid concentration was analyzed with NanoDrop spectro-
photometer (Thermo Fisher, Wilmington, DE). Plasmid was generally
purified at 300±100 ng/ml with an average 260/280 ratio of 2.8. If
plasmid concentrations were below 300, plasmids were concentrated
by isopropanol precipitation.

Kinase-dead PRKACA mutant

The kinase-dead mutant of human PRKACA was obtained by
substituting lysine at position 73 for alanine (G-A substitution in
AAG triplet coding for lysine). This was achieved by PCR using the
QuickChangeII site-directed Mutagenesis Kit (Strategene) with the
following primers: K73A sense 50-GGAACCACTATGCCATGGAGATCCT
CGACAAACA-30; K73A anti-sense 50-TGTTTGTCGAGGATCTCCATGGCA
TAGTGGTTCC-30. The resulting construct was verified by restriction
analysis using the newly created NcoI site (underlined in the sense
primer) and sequencing.

Neuronal cell culture

Embryonic hippocampal culture has been described earlier (Goslin
et al, 1998; Oliva et al, 2006). Briefly, adult pregnant Sprague-Daley

rats were euthanized by CO2 and the E18 embryos were dissected in
fresh Hibernate media (BrainBits, HE-Ca 500, Springfield, IL)
supplemented with B27 (Invitrogen 17504). Isolated hippocampi were
transferred to Hibernate media without B27 and incubated for 15 min
at 371C with 0.25% Trypsin (Invitrogen 25300), in the presence of
DNaseI at final concentration of 0.5 mg/ml (Sigma D5025). The tissue
was then washed five times with the same medium supplemented with
B27 and triturated until no clumps were visible (about 5–10 times).
Dissociated neurons were counted and used for transfection during
the next 2 h.

Transfected and non-transfected neurons were grown in 96-well
plates (Perkin Elmer, 6005182, Waltham, MA) coated with 10mg/ml
Poly-D lysine (Sigma P7886), and 10mg/ml laminin (Sigma L2020).
When cells were plated on PLL (Sigma P2636) alone as a substrate,
the concentration was 1 mg/ml. Enriched neurobasal medium (ENB),
modified from Meyer-Franke et al (1995) included Neurobasal
(Invitrogen 12348), penicillin/streptomycin, insulin (Sigma I6634
5 mg/ml), sodium pyruvate (1 mM), transferrin (Sigma T1147 100 mg/
ml), BSA (Sigma A4161 100 mg/ml), progesterone (Sigma #P8783
60 ng/ml), putrescine (Sigma P7505 16 mg/ml), sodium selenite
(Sigma S5261 40 ng/ml), triiodo-thyronine (Sigma T6397, 1� ),
L-glutamine (1 mM), N-acetyl cysteine (Sigma A8199NAC, 5 mg/ml),
and B27. Media was also supplemented with CNTF (10 ng/ml).

Transfection

Transfection of embryonic hippocampal neurons was accomplished
using the Amaxa 96-well ‘Shuttle’ nucleoporation system (Lonza,
Walkserville, MD) following the manufacturer’s instructions. Briefly,
the Amaxa 96-well nucleoporation plate was loaded with the mixture
of 75 000 neurons in 20 ml of Amaxa transfection solution, and 400 ng
of total DNA (including mCherry reporter with ratio plasmid to
reporter 6:1) in a volume of 2ml. The rat neuron transfection, ‘high-
efficiency’ program was used, and the neurons were recovered with
80 ml of ENBþHEPES (20 mM, Invitrogen 15630). Several control
plasmids were used including pSport mCherry (reporter alone) and
pSport CAT, a plasmid with no CMV promoter (chloramphenicol
acetyltransferase gene). Cells were then plated at two different
densities—8000 and 12 000 cells per well. Transfection efficiency
was validated by cotransfecting mCherry with plasmids from the
library containing myelin basic protein, vimentin, GFAP, and NCAM
cDNAs and subsequent identification by antibody staining (data not
shown).

Fix/stain

Neurons were incubated in 371C 5% CO2 incubators for 48 h. Plates
were removed and immediately fixed with room temperature 4% PFA,
4% Sucrose in PBS by removing 50ml of medium and underlaying
120ml of fixative for 30 min. Plates were rinsed with PBS and stained
with anti-bIII-tubulin (Aves Labs, TUJ) and Hoechst dye (Invitrogen
33342).

Imaging/tracing

Cellomics KineticScan Reader (Thermo Scientific Cellomics, Pitts-
burgh, PA) was used to automatically image nine fields in each well of
the plates at � 10 magnification in three different channels for nuclear
staining (Hoechst), neurite staining (bIII-tubulin), and the reporter
gene (mCherry). Images were traced automatically using the Neuronal
Profiling Bioapplication version 2.x. For most of the downstream
analysis, only the Transfectedþ and Neuriteþ populations were
analyzed. Reported neurite measures are listed in Supplementary
Figure 1. Other parameters were not analyzed because of high
variability in the controls. Supplementary tables include complete
results. Images and other data sets are available on request.

Overview

Neurons were transfected and plated in six replicate wells for each
cDNA plasmid, at two different densities. Two independent experi-
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mental replicates were performed for each of the clones. The clones
that changed the morphology of the neurites reproducibly were
transfected a third time. Over 10 000 wells were imaged and analyzed,
each with nine fields, and one field from each well was manually
annotated to check the quality of the automated tracing. The
annotation identified acute errors that led to the images being removed
from the data set (mostly because of poor focus). The resulting data
were normalized (see below) so that the resulting value indicated
difference from control for each parameter.

Analysis

Data aggregation/storage
Raw data were managed by the Cellomics Store, which consists
of an SQL database and a network-attached fileserver (HP).
Raw data consisted of metadata associated with scanning and
tracing (exposures, focus offsets, thresholds), raw images and the
results of the tracing. In addition, cell and well level data were
exported and stored on a separate fileserver, organized by experi-
ment with accompanying Excel tables listing how particular wells
were treated.

Spotfire DecisionSite (Tibco) was used to associate the treatment
variables (which plasmids were transfected in which wells) and
perform basic quality control, including checks for tracing errors,
low-and high-density wells, cell clumps, and plating errors.

Tracing quality control
Tracing was validated several times by comparison with Neurolucida
tracing (MicroBrightField, Williston, VT). For validation of the tracing
in the screen, an image of the tubulin channel from the first field of
every well in each plate (over 10 000 images) was exported as a jpeg.
Then, three annotators ran a custom C# program on their desktop
computers that displayed the image and gave several options as to the
quality of the focus, threshold, tracing, and cell density. The combined
data from the annotators were used to either retrace plates or eliminate
wells from the analysis.

Transfection threshold
By examining the red fluorescent intensity of the neurons that were not
transfected with plasmid, a background amount of intensity was
established using Spotfire DecisionSite, and used as a threshold for the
classification of neurons as transfected. Within each experiment, a
transfection threshold was defined using the distribution of the
average red intensity (AI) of each cell in control neurons that were not
subjected to nucleofection. This distribution was near to log-normal.
Treated cells with a log(AI) higher than mean þ 2 s.d. of the control
log(AI) were considered transfected. Only transfected cells were
included in the analysis.

Normalization
The morphometric data of transfected cells in each treatment were
normalized with respect to a control within the same experiment. We
have observed that experiments, defined as the sequence ‘isolation of
neurons/transfection/culture/staining/imaging,’ are a major source of
variation. The controls are neurons that were subjected to transfection
with the transfection marker and the plasmid pSport CAT as well as
the reporter mCherry. After normalization, the variables for a given
treatment were aggregated across the N replicate experiments where
the treatment was present. Briefly, two different normalizations
were used.

The first, rx, expresses the difference between control and treatment
relative to the control,

rx ¼ xc � xt

xc

where �xt and �xc are the means of the treatment and the control for
variable x.

This normalized variable is aggregated across the N experiments,
according to,

rxagg ¼
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where nti and nci are the cell number of the treatment and the control in
experiment i. This normalization is intended to express the biological
effect of the treatments disregarding its statistical significance given
that it is not dependent on sample size and dispersion.

To estimate the statistical significance of the effects produced by any
treatment, a different normalization was used. It is a t-value that is
aggregated as a simple sum across the N replicated experiments. The
statistical significance of this sum is computed from the convolution of
N Student distributions each with ntiþnci–2 degrees of freedom.

Linear model
A generalized linear model for the NTL as a function of experiment and
treatment was built to evaluate the quality of cotransfection-based
cell selection, the normalization scheme and the inter-experiment
variability.

NTLij ¼ C þ Ei þ Tj þ ETij þ eij

where C is the overall average NTL, Ei represents the effect of the ith
experiment, Tj represents the effect of the jth treatment, and ETij

represents the interaction between Ei and Tj. This model was fitted to
the NTL data from four ( j¼1y4) controls, pSPORT CAT, RFP, KLF4,
and KLF7 across eight experiments (i¼1y8). KLF4 and KLF7 are
genes that systematically affect neurite growth (Moore et al, 2009). The
variable NTL was analyzed in its original form and after the two
normalization procedures for both transfected and non-transfected
cells analyzed independently. Thus, the model was fitted to six
different data sets, each of them with 64 data points (8� 4� 2 seeding
densities), producing 32 degrees of freedom for the error eij that is
assumed to be independent and identically distributed with mean¼0.

Correlation analysis
A Pearson correlation was applied to normalized data. Bootstrap
resampling was used to construct a CI for the correlations using
custom software written in C# with Microsoft Visual Studio 2008.
During bootstrapping, pairs of values were taken by replacement n
times to reconstruct a bootstrap replicate of the entire population. That
process was then repeated 10 000 times, and the correlation coefficient
was stored for each run. CI is reported as the top and bottom 2.5%
correlation coefficients.

Neuron survival
Nuclear size and intensity of DNA staining (Hoechst) have long been
used as indicators of the live/dead status of cells. Small and bright
nuclei are the result of heterochromatin condensation, a hallmark of
apoptotic cells death. Big and dim nuclei correspond to cells that are
alive. We use this distinction to measure the cell survival of our
cultures transfected with a variety of cDNAs, placing emphasis on
those cDNAs that we found to significantly reduce neurite outgrowth.

In most instances, the clusters of live and dead cells in the nuclear
area versus intensity were easily distinguished. Semi-supervised
classification was implemented using three categories (live, dead,
out of range) using a custom script in MatLab and was run on data on a
plate-by-plate basis. The survival rate varied as a function of the
transfection and neurite-bearing status. The RFPþ cells with neurites
(NþRFPþ ), showed the highest survival rate.

As a measure of whether survival rates in treatments reducing
neurite growth were significantly lower, cells in which cDNA for RFP
was transfected with 240 ng of DNA were used as controls (same
amount of cDNA used in the screen). Z factors were computed within
each experiment using the mean and the s.d. of the control. The results
within each treatment per replicate experiments were averaged and
significance was computed using a permutation test. Supplementary
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Figure 3B shows the signed significance for the effect of genes on
survival. The signed significance is the absolute value of the log10
(P-value) multiplied by the sign of the Z factor. A signed significance
of p�2 means that survival of the treatment is significantly lower
than the control.

Bioinformatics

Phenotype clustering
After averaging values from genes that were represented by two
species or multiple clones, phenotypic classes were determined by
taking a discrete measure of significance (�1 significantly below
control, 0 not significant, and 1 significantly above control at Pp0.05)
and clustering to form distinct groups based on neurite average length
and primary neurite count. Clustering was performed on the average
values for neurite average length, primary neurite count, and
branching with the main groups ‘stratified’ by the prior discrete
clustering. The hierarchical clustering algorithm used normalized
phenotypic data as well as the statistical status of each gene, but did
not consider which genes were transfected or to what classes they
belonged. This led to the arrangement in Figure 3. Hierarchical
clustering was performed in Spotfire DecisionSite using clustering
algorithm UPGMA and Euclidian distance.

Phylogenetic trees
Genes were grouped into five main categories, based primarily on their
gene ontology information, but additionally hand curated to ensure
higher accuracy. Most protein kinases were considered only if they
were listed in one of the kinome references (Manning et al, 2002;
Caenepeel et al, 2004). A few genes had ambiguous classification as
they interacted with both kinases and phosphatases or had reported
activity but no obvious enzymatic domain, etc. The process of tree
creation is outlined graphically in Supplementary Figure 5. Protein
sequence was obtained from the gene’s Entrez Gene (http://
www.ncbi.nlm.nih.gov/sites/entrez?db¼gene) entry, and loaded into
EBI’s ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/) (Thomp-
son et al, 1994; Larkin et al, 2007) for each group separately in FASTA
format. The output of the cluster algorithm is a dendrogram file, which
represents the hierarchy in a nested text format [i.e. (Parent(Child
A:0.2,ChildB(GrandchildA:0.13,GrandchildB:0.1):0.3))]. The dendro-
gram file is read into custom software, which parses the dendrogram
and represents it as a binary tree, which can be drawn automatically in
CorelDraw (X3, Corel Corporation, Mountain View, CA) as a radial,
centered tree. Branch lengths in the tree correspond to the log of the
distance as reported by ClustalW2. The angles of the branches and the
order of the two segments from a branch are arbitrary and cosmetic.
Some branches have multiple markers, indicating different clones that
were tested for that gene (human and mouse as well as clone variants
of the same species). Other branches have no marker, indicating one of
the following; the gene was screened but the replicates failed, there
were too few cells to analyze (possibly a viability defect), or failed
tracing or image validation.

Phylogenetic gene cluster analysis
Phylogenetic relationships (from above) were transformed into a table
where the columns represented nodes of the tree (except the leaves),
and records were the genes. Values were binary representations of a
gene’s presence in that node (the column representing the node would
get a 1 for presence or 0 for absence). That table was imported into
Spotfire and hierarchical clustering (using correlation and UPGMA)
was performed. A custom C# program was run that sliced through the
hierarchy at any number of levels (termed tiers). The program operates
in one unit at a time—a ‘node set.’ Each node set would have some
number of genes and the total number of genes would be represented
by the total node sets across the tier. For each node set, the values for a
particular morphological parameter from the member genes were
averaged. The data were represented graphically as a cluster heat map,
where each tier is a row in the graph, and a node set is a rectangle,
colored by its average value. Statistics fit the cluster averages with a

bootstrap sample from the entire data set. Significances are indicated
by diamonds and asterisks. Diamonds indicate ‘spiked bootstrap’—the
family had a significant average when considering it against random
picks always including the maximum or minimum value of the
parameter (similar to first inverse jackknife) (Efron and Tibshirani,
1994). Asterisks indicate the family had a significant average, even
after correcting for multiple comparisons per tier by Benjamini/
Hochberg methods (Benjamini and Hochberg, 1995) (a¼0.05). The
analyses were run separately for each parameter tested, and significant
values were summarized.

Pathway gene cluster analysis
Pathway information was garnered from Entrez Gene through linking
to Reactome (http://www.reactome.org/) and KEGG, (http://www.
genome.jp/kegg/pathway.html) (April 2009). Pathway annotations
were found for 49% of the genes. KEGG not only provides pathway
annotation, but also has a hierarchical representation of the pathways,
so was chosen for further analyses. The hierarchical categories,
subcategories, and pathways themselves were columns of a table, and
genes were in each row. If a gene (e.g. IKBKB) was a member of the
‘Pancreatic cancer’ pathway, then it was assigned a 1 in that column, a
1 in the column ‘5.1 Cancers,’ and a 1 in the column ‘5 human diseases.’
In this cluster analysis, genes were allowed to be duplicated, so IKBKB
had other rows in the table, and was assigned with the information for
other pathways as well (chronic myeloid leukemia, prostate cancer,
small cell lung cancer, type II diabetes mellitus, apoptosis, B-cell
receptor signaling, T-cell receptor signaling, Toll-like receptor signal-
ing, adipocytokine signaling, insulin signaling, MAPK signaling).
Pathways with fewer than two genes were excluded. Average values
were taken for each group, and displayed on a heat map as before.
Here, a small square symbol indicates the family had a significant
average but failed to be significant after corrections, and diamonds
indicate significance compared with bootstrap replicates always
including the maximum or minimum value of the parameter being
tested (spiked bootstrap). When moving to lower tiers, genes were not
allowed to be duplicated within a group, but were allowed to be
duplicated between groups.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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