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Abstract. Formalizing an ontology for a domain is a tedious and cum-
bersome process. It is constrained by the knowledge acquisition bottle-
neck. There exist many text corpora that could be used to create ontolo-
gies. Here we provide a novel unsupervised bottom-up ontology gener-
ation method. This method is based on lexico-semantic structures and
Bayesian reasoning to expedite the ontology generation process. We pro-
vide a quantitative and two qualitative results illistrating our approach
using a high throughput screening assay corpus and two custom text
corpora. This process could also provide evidence for domain experts to
build ontologies based on top-down approaches.

Keywords: probabilistic ontology learning

1 Introduction

An ontology is a formal, explicit specification of a shared conceptualization [11],
[22]. Formalizing an ontology for a given domain with the supervision of domain
experts is a tedious and cumbersome process. The identification of the struc-
tures and the characteristics of the domain knowledge through an ontology is a
demanding task. This problem is known as the knowledge acquisition bottleneck
(KAB) and a suitable solution presently does not exist.

There exists a large number of text corpora available from different domains
(e.g., the BioAssay high throughput screening assays4) that need to be classified
into ontologies to faciliate the discovery of new knowledge. A domain of discourse
(i.e., sequential number of sentences) shows characteristics such as 1) redundancy
2) structured and unstructured text 3) noisy and uncertain data that provide a
degree of belief 4) lexical disambiguity, and 5) semantic heterogeneity problems.

4 http://bioassayontology.org/



We discuss in depth the importance of these characteristics in section 3. Our
goal in this research is to provide a novel method to construct an ontology from
the evidence collected from the corpus. In order to achieve our goal, we use the
lexico-semantic features of the lexicon and probabilistic reasoning to handle the
uncertainty of features. Since our method is applied to build an ontology for
a corpus without domain experts, this method can be seen as an unsupervised
learning technique. Since the method starts from the evidence present in the
corpus, it is can be seen as a reverse engineering technique. We use WordNet5 to
handle lexico-semantic structures, and the Bayesian reasoning to handle degree
of belief of an uncertain event. We implement a Java based application to serialize
the learned conceptualization to OWL DL6 format.

The rest of the paper is organized as follows: section 2 provides a broad inves-
tigation of the related work. Section 3 provides details of our research approach.
Section 5 provides a detail description of the experiments based on three dif-
ferent text corpora and the discussion. Finally, section 6 provides the summary
and the future work.

2 Related Work

The problem of learning a conceptualization from a corpus has been studied in
many disciplines such as machine learning, text mining, information retrieval,
natural language processing, and Semantic Web (first order logical reasoning).

Table 1. The summary of the related work. Probabilistic learning (PR), never end-
ing language learning (NELL), discovery and aggregation of relations in text (DART),
recognising textual entailment (RTE), automated theorem proving (ATP), natural lan-
guage understanding (NLU), formal concept analysis (FCA), and ontology population
(OP)

Work Purpose T-Box A-Box Method

PR [10],[13],[15] reasoning available available prob. theory

NELL [3] 24 × 7 learning fixed dynamic ML techniques

DART [8] world knowledge × × semi-automated

RTE [2], [14] entailment × × ATP

NLU [20] commonsense rules × × semi-supervised

Text2Onto [7] ontology learning
√ √

semi-supervised

LexO [2] complex classes
√

× semi-supervised

FCA [6] taxonomy
√

× FCA

OP [5], [4], [23] ontology population available available semi-/supervised

5 http://wordnet.princeton.edu/
6 http://www.w3.org/TR/owl-guide/



Table 1 shows the pros and cons of different techniques to solve the prob-
lem of ontology learning. Each method covers some portion of the problem and
each method learns the conceptualization from terms, and present it as tax-
onomies and axioms to an ontology. On the other hand, most of the methods
use a top-down approach, i.e., an initial classification of an ontology is given.
The uncertainty inherited from the domain is usually dealt with by a domain
expert, and the conceptualization is normally defined using predefined rules or
templates. These methods show the characteristics of a semi-supervised and a
semi-automated learning paradigm.

3 Approach

Our research focuses on an unsupervised method to quantify the degree of belief
that a grouping of words in the corpus will provide a substantial conceptual-
ization of the domain of interest. The degree of belief in world states influences
the uncertainty of the conceptualization. The uncertainty arises from partial
observability, non-determinism, laziness and theoretical and practical ignorance
[19]. The partial observability arises from the size of the corpus. Even though
a corpus many be large, it might not contain all the necessary evidence of an
event of interest. A corpus contains ambiguous statements about an event that
leads to a non-determinism of the state of the event. The laziness arises from
the too much work that needs to be done in order to learn exceptionless rules
and it is too hard to learn such rules. The theoretical and practical ignorance
arises from lack of complete evidence and it is not possible to conduct all the
necessary tests to learn a particular event. Hence, the domain knowledge, and
in our case the domain conceptualization, can at best provide only a degree of
belief of the relevant groups of words. We use probability theory to deal with the
degrees of belief. As mentioned in [19], the probability theory has the same onto-
logical commitment as the formal logic, though the epistemological commitment
differs. The process of learning and presenting a probabilistic conceptualization
is divided into four phases as shown in Figure 1. They are, 1) pre-processing
2) syntactic analysis 3) semantic analysis, and 4) representation.

3.1 Pre-processing

A corpus contains a plethora of structured and unstructured sentences built from
a lexicon. A lexicon of a language is its vocabulary built from lexemes [12], [16].
A lexicon contains words belonging to a language and in our work individual
words from the corpus will be treated as the vocabulary, thus, the lexicon of
the corpus. In pure form, the lexicon may contain words that appear frequently
in the corpus but have little value in formalizing a meaningful criterion. These
words are called stop words or in our terminology: negated lexicon, and they are
excluded from the vocabulary. The definition of the lexicon of our work is given
as follows.



Definition 1. A lexicon LO is the set that contains words belonging to the En-
glish vocabulary, which is part-of-speech (POS) type tagged with the Penn Tree-
bank English POS tag set [17]. The set LO is built from the tag set: NN (noun,
singular or mass), NNP (proper Noun, singular), NNS (noun, plural), NNPS
(proper Noun, plural), JJ (adjective), JJR (adjective, comparative), JJS (adjec-
tive, superlative), VB (verb, base form), VBD (verb, past tense), VBG (verb,
gerund or present participle), VBN (verb, past participle), VBP (verb, non-3rd
person singular present), and VBZ (verb, 3rd person singular present)

Fig. 1. Overall process: process categorizes into four phases; pre-processing, syntactic
analysis, semantic analysis & representation

Definition 1 implies that negated lexicon LO is the set that contains English
words that are POS tagged with the Penn Treebank English POS tag set, other
than the tags given in Definition 1. In addition, the word length WL above some
threshold WLT

is also considered when building LO. The length of a word, with
respect to POS context, is the sequence of characters or symbols that made up
the word (e.g., the word ”mika” has a word length of four WL = 4). By default,
we consider that a word with WL > 2 sufficiently formalizes to some criterion.

Building up the pure lexicon at this stage, excluding the negated lexicon of
the pre-processing, is known as tokenization from sentences [16]. Here, the pure
form of the lexicon might contain words that need to be further purified according
to some criterion. Words of the corpus contain many standard and constructed
words. As mentioned, some words do not provide useful information (e.g., on, off,
and at). In order to filter out these words, in the next phase of the pre-processing,
each word is processed through a regular expression filter. The regular expression
filter is a parameter of the system. The default regular expression is given as
[a− zA−Z]+ if this parameter is not specified by the user. e.g., a word such as



du-145 will be filtered out from this regular expression. We also try to do token
normalization to some extent. This is the process of canonicalizing the tokens
so that matches occur despite superficial differences in the character sequences
of the tokens [16]. In the next step, the vocabulary learned from the corpus
is subjected to case-folding by reducing all letters to lower case. e.g., Protocol
case-folds to protocol. Generally, documents use different forms of a word such as
organize, organizes and organizing for grammatical reasons. In addition to this
there are families of derivationally related words with similar meanings. We use
stemming and lemmatization to reduce the inflectional forms and derivational
forms of a word to a common base form [16]. We achieve this with the aid of
WordNets’ stemming algorithms. We couple the knowledge of POS tag of the
lexicon to get the correct context of the word.

3.2 Syntactic Analysis

The pre-processing phase eliminates the noise of the corpus and tags the LO
according to Definition 1. The primary focus on this phase is to look at the
structure of the sentences and learn the associations among the words in LO. We
assume that each sentence of the corpus follows the POS pattern in expression
1,

(SubjectNounPhrase+)(V erb+)(ObjectNounPhrase+) (1)

We hypothesize that the associations learned from this phase of the LO
provides the potential candidates for concepts and relations of the ontology. But
the words in the LO itself do not provide sufficient ontology concepts. We use a
notion of grouping of consecutive sequence of words to form an OWL concept.
This grouping is done using an appropriate N-gram model [1]. We illustrate this
idea using Figure 2.

Fig. 2. An example three-gram model

According to Figure 2, group w1 ◦ w2 forms a potential concept in the con-
ceptualization. We use the notation x◦y to show that the word y is appended to
the word x. The groups w2 ◦w3, w3 ◦w4 etc. form other potential concepts in the
conceptualization. Word w3 comes after group w1 ◦ w2. According to the Bayes
viewpoint, we collect information to estimate the probability P (w3|{w1 ◦ w2}),
which will be used to form IS-A relationships, w1◦w2 v w3 using an independent
Bayesian network with conditional probability P ({w1 ◦ w2}|w3). In addition to



this, we count the groups appear in the left hand side and the right hand side
of the expression 1 and the association of of these groups given the verbs of LO.
These counts are used in the third phase to create the relations among concepts.

3.3 Semantic Analysis

This phase conducts the semantic analysis with probabilistic reasoning, which
constitutes the most important operation of our work. This phase determines
the conceptualization of the domain using a probability distribution for IS-A
relations and relations among the concepts. In addition to this, and in order
to provide a useful taxonomy, we induce concepts from clustered concepts. Our
defintion of concept learning is given in Definition 2.

Definition 2. The set W = {w1, . . . , wn} represents independent words of the
LO and each wi has a prior probability θi. The set G = {g1, . . . , gm} represents
independent N-gram groups learned from the corpus and each gj has a prior
probability ηj. When w ∈ W and g ∈ G, P (w|g) is the likelihood probability π
learned from the corpus. The entities w and g represent the potential concepts
of the conceptualization. Within this environment, an IS-A relationship between
w and g is given by the posterior probability P (g|w) and this is represented with
a Bayesian network having two nodes w and g as shown in the Figure 3 and,

P (g|w) =
π × η∑

i p(w|gi)× p(gi)
. (2)

Fig. 3. Probabilistic IS-A relationship representation of the conceptualization (2). w
and g are defined as the concepts of the conceptualization.

Lets define the knowledge factor : the lower-bound that select the super-
concepts of the conceptualization.

Definition 3. W = {w1, . . . , wn} represents independent words of the LO and
each wi has a prior probability θi. Lets define the knowledge factor (KF) as the
lower-bound: if θi ≥ τ with 0 ≤ τ ≤ 1 then wi is considered as a super-concept
of the conceptualization.

Definition 3 states that W of Definition 2 is considered as a super-concept of
the conceptualization.



Fig. 4. w1, w2, w3, w4 and w5 are super-concepts. g1, g2, g3 and g4 are candidate sub-
concepts. There are 5 independent Bayesian networks. Bayesian networks 2 and 5 share
the group g2 when representing the concepts of the conceptualization

Definition 4. The probabilistic conceptualization of the domain is represented
by an n-number of independent Bayesian networks sharing groups (Figure 4).

Figure 4 shows multiple Bayesian networks that share a common group g2.
The interpretation of Definition 4 is: Let a set G contains an n-number of finite
random variables {g1, . . . , gn}. There exist a group gi, which is shared by m
words {w1, . . . , wm}. Then, with respect to the Bayesian framework, BNi of
P (gi|wi) is calculated and max(P (gi|mi)) is selected for the construction of
the ontology. This means that if there exists two Bayesian networks and the
Bayesian network one is given by the pair w1, g1 and the Bayesian network
two is given by the pair {w2, g1} then the Bayesian network that has the most
substantial IS-A relationship is obtained through maxBNi(P (g1|w1)) and this
network is retained and other Bayesian networks will be ignored when building
the ontology. If all P (g1|w1) remains equal, then the Bayesian network with the
highest super-concept probability will be retained. These two conditions will
resolve any naming issues.

Definition 5. Given a subset of concepts GS = {g1, . . . , gn}, GS ⊂ G, with size
n, for a given super-concpet w, when P (g1|w), . . . , P (gn|w) holds, the prefixes
of the concepts are extracted and known as an induced concepts. For a m-gram
model, at most up to m − 1 concepts can be induced. For all induced concepts
c, the concepts name collision will be avoided by assigning different namespaces.
The induced concept will be given a prior probability of 0.



Definition 5 gives an efficient way to represent the taxonomy of the concep-
tualization. Newly induced concepts contain words up to at most m− 1. These
concepts induction lead to concepts collision in the given namespace. This situ-
ation is avoided according to Defintion 6.

Definition 6. When a concept is induced from a group of concepts, the induced
concept is assigned to a different namespace in order to avoid possible concept
name conflicts. The namespace assignment is forced, if and only if there exist
a concept with the same name in the system, otherwise induced concepts will be
subjected to the default namespace of the system.

The next step is to induce the relationships to complete the conceptualiza-
tion. In order to do this, we need to find semantics associated with each verb.
The relations are as important as the concepts in a conceptualization. The re-
lations exist among the concept of the conceptualization. We hypothesize that
relations are generated by the verbs in the corpus.

Definition 7. The relationships of the conceptualization are learned from the
syntactic structure model by the expression 1 and the semantic structure model
by the lambda expression λobj.λsub.V erb(sub, obj), where β-reduction is applied
for obj and sub of the expression 1.

Definition 8. If there exists a verb V between two groups of concepts C1 and
C2, the relationship of the triple (V, C1, C2) is written as V (C1, C2) and model
with conditional probability P (C1, C2|V ). The Bayesian network for relationship
is and the model semantic relationship is given by,

P (C1, C2|V ) = p(C1|V )p(C2|V )→ V (C1, C2)

Fig. 5. Bayesian networks for relations modeling. C1 and C2 are groups and V is a
verb

Using definitions 7 and 8, the relationship among multiple concepts are de-
fined in 9. We define the relations in terms of groups of words in LO. These
groups are clustered around the most probable words found in the corpus.



Definition 9. Let Sp ⊂ S be a part of co-occurance sentence of the corpus,
which can be transformed into {Gi vj Gk} groups and a verb. The sizes of Gi

and Gk are |Gi|, |Gk| and Gi = {g1, . . . , gm} and Gk = {gm+1, . . . , gn}, n > m.
Then, the relationships among Gi and Gk are build from the combinations of
the elements from Gi and Gk with respect to vj in accordance with the Bayesian
model p(Gi, Gk|Vj). There will be |Gi| × |Gk| relations,

vj(g1, gm+1)← p(g1, gm+1|vj)

vj(g1, gm+2)← p(g1, gm+2|vj)

. . .

vj(g1, gn)← p(g1, gn|vj)

vj(g2, gm+1)← p(g2, gm+1|vj)

. . .

vj(gp, gm+1)← p(gp, gm+1|vj)

. . .

vj(gm, gn)← p(gn, gm|vj)

The relations learned from Defintions 7 and 8 sometimes needs to be sub-
jected to a lower bound. The lower bound is known as the relations factor, and
it is used as an input parameter to the semantic analysis phase to set this lower
bound.

Definition 10. Let set R = {v1(C1, C2), . . . , vm(Ck, Cr)} be the relations that
are learned from the corpus. Relations vi(Cj , Ck) are assigned a probability using
a Bayesian model p(Cj , Ck|Vi). When these relations are ordered based on their
probability, a threshold ϕ is defined as the Relations Factor (RF) of the system.

Definition 10 allows the user to limit the number of relations learned from
the system. When the corpus is substantially large, the number of relations is
proportional to the number of verbs in LO. Not all relations may relevant and
the RF is used as the limiting factor.

Definition 11. Let vi be a verb and vj is the antonym verb of vj learned from
WordNet (vi ./ vj). Let there be relations vi(Gm, Gn) and vj(Gm, Gn) modeled
by p(Gm, Gn|vr) (vr = i, j). Since, vi ./ vj for Gm and Gn, the relationship with
the highest p(Gm, Gn|vr) value will be selected and the other relationship will be
removed.

We use verbs in LO as the key elements in forming relationships amoung
concepts. Verbs have opposite verbs. Thus, according to Definition 11, if a verb
is associated with some concepts and these concepts happen to be associated
with a opposite verb, the verb with the highest Bayesian probability value is
selected for the relations map and the other relationship will be removed from
the system. Finally, the probabilistic conceptualization is serialized as an OWL
DL ontology in the representation phase.



4 Implementation

The implementation of our approach uses a several open source projects to pop-
ulate the required contexts at different phases as we introduce in section 3. The
bootstrapping algorithm requires tokenizing sentences and stemming or lemma-
tizing of tokens to produce LO of the corpus. According to Defintion 1, LO is
defined based on the Penn Treebank English POS tag set. We use the Stanford
log-linear POS tagger7, which uses the standard Penn Treebank tag set. We
use the OpenNLP8 project to produce sentences and tokens and the WordNet
project to lookup for the type, stem and lemma of a word. In order to access
the WordNet electronic library, we use the JWI9 project. The BioAssayOntol-
ogy corpus contains XHTML documents. We use the HTML parser10 library
to extract text from these documents. One of our other corpora contains PDF
documents. We use the Apache PDFBox11 library to extract the contents from
the PDF documents. Finally, we use the Jena API12 to serialize the probabilistic
conceptualization model into OWL DL. Our implementation is based on Java 6
and it is named as PrOntoLearn (Probabilistic Ontology Learning).

5 Experiments

We have conducted experiments on three main data corpora, 1) the PCAssay, of
the BioAssay Ontology (BAO) project, Department of Molecular and Cellular
Pharmacology University of Miami, School of Medicine 2) a sample collection of
38 PDF files from ISWC 2009 proceedings, and 3) a substantial portion of the
web pages extracted from the University of Miami, Department of Computer
Science13 domain . We have constructed ontologies for all three corpora with
different parameter settings. One of the key problems we have encountered is
the ontology evaluation. The BioAssay ontology dataset and the PDF dataset
was impossible to evaluate as there are no existing reference ontologies or no
ground truth that we could find of. Therefore, we use the third dataset from the
University of Miami, Department of Computer Science domain and we conduct
recall and precision given a reference ontology.

The first corpus, which is the primary data corpus of the experiment, contains
high throughput screening assays performed on various screening centres. This
corpus grows rapidly each month. We specifically limited our dataset to assays
available on the 1st of January 2010. Table 2 provides the statistics of the corpus.
We extract the vocabulary generated from [a-zA-Z]+[- ]?\w* regular expression,
and normalized them to create LO of the corpus.

7 http://nlp.stanford.edu/software/tagger.shtml
8 http://opennlp.sourceforge.net/
9 http://projects.csail.mit.edu/jwi/

10 http://htmlparser.sourceforge.net/samples.html
11 http://pdfbox.apache.org/
12 http://jena.sourceforge.net/
13 http://www.cs.miami.edu



Table 2. The PCAssay (the BioAssay Ontology project) corpus statistics

Title Statistics Description

Documents
All documents are XHTML

1,759 formated with a given template

Unique ConceptWords
Normalized candidate concept words from

13,017 NN, NNP, NNS, JJ, JJR & JJS
using [a-zA-Z]+[- ]?\w*

Unique V erbs
Normalized verbs from

1,337 VB, VBD, VBG, VBN, VBP & VBZ
using [a-zA-Z]+[- ]?\w*

Total ConceptWords 631,623

Total V erbs 109,421

Total Lexicon 741,044 Lexicon = ConceptWords
T

V erbs

Total Groups 631,623

Figure 6 shows the running time of the PrOntoLearn to build the probabilistic
conceptualization model. It is found from the experiments that the POS tagger
requires approximately 2,600 ms to train. The average file size of the corpus
is approximately 6 Kb. We conducted these experiments in a Genuine Intel(R)
CPU 585 @ 2.16GHz, 32 bits, 2 Gb Toshiba laptop. Figure 6 shows that the
time required to build the conceptualization grows linearly.

One of the other obstacles we have encountered in terms of time complexity
is in the representation layer. We use the Jena API to serialize the probabilistic
conceptualization into OWL DL. When the system produced more than 1,000
concepts and relations, it is found that the Jena API takes a considerable amount
of time to serialize the model. We use different architectural schemes to improve
its performance. With all optimization, the presentation layer requires approxi-
mately 3.2 hours to serialize the model for the BioAssay Ontology corpus with
full data set of 1,758 documents with capacity of 11.5 Mb. In order to provide a
fast visualization of the conceptualization, we have written a simple yet flexible
Java swing graphical user interface (GUI). This GUI has provided us visualizing
and debugging the code as smoothly as possible. One of the other advantages
of using a GUI is that it also provides the probabilities of the joint probability
distribution P (X,G), which is the representation of our probabilistic conceptu-
alization.

The idea of our work is to generate an ontology without the supervision
of a domain expert (unsupervised) for any given corpus. The user has to set
system parameters such as KF, RF and regular expression of LO. Since we
use corpora from the bio medical domain, a collection of research papers and
set of documents collected from computer science web site, the evaluation of
the created ontology using standard techniques such as precision and recall is



Fig. 6. The BioAssay Ontology corpus vs. build time

not easy. We evaluate the generated ontologies with human domain experts.
We obtain the comments and recommendations from the domain expert on the
importance of the generated ontology. The ontology that is generated is too large
to show in here. Instead, we provide a few distinct snapshots of the ontology
with the help of Protégé OWLViz plugin. Figures 7 and 8 show snapshots of
the ontology created from the BioAssay Ontology corpus for input parametes
KF = 0.5, N-gram = 3, and RF = 0.9. Figure 7 shows the IS-A relationships
and Figure 8 shows the binary relationships.

We use a qualitative method to evaluate the BioAssay ontology using a hu-
man expert. According to the expert, the ontology contains rich set of vocab-
ulary, which is very useful for top-down ontology construction. But expert also
mentioned that the ontology have a flat structure. The main reason for this ob-
servation is that we use a 3-gram generator to create the ontology. Therefore,
the maximum levels this model achieve is at most 3.

The www.cs.miami.edu corpus is used to calculate quantitative measure-
ments. The gold standard based approaches such as precision (P ), recall (R)
and F-measure (F1) are used to evaluate ontologies [9]. We use a slightly mod-
ified version of [21] as our reference ontology. Table 3 shows the results. The
average precision of the constructed ontology is approximately 42%. It is to be
noted that we use only one reference ontology. If we use another reference on-
tology the precision values varies. This means that the precision value depends
on the available ground truth.



Fig. 7. An example snapshot of the BioAssay Ontology corpus with IS-A relations

Fig. 8. An example snapshot of the BioAssay Ontology corpus with binary relations

Table 3. Precision, recall and F1 measurement for N -gram=4 and RF=1 using ex-
tended reference ontology

KF Precision Recall F1

0.1 0.424 1 0.596

0.2 0.388 1 0.559

0.3 0.445 1 0.616

0.4 0.438 1 0.609

0.5 0.438 1 0.609

0.6 0.424 1 0.595

0.7 0.415 1 0.587

0.8 0.412 1 0.583

0.9 0.405 1 0.576

1.0 0.309 1 0.472



The results show that our method creates an ontology for any given domain
with acceptable results. This is shown in the precision value, if the ground truth
is available. On the other hand, if the domain does not have ground truth the
results are subject to domain expert evaluation of the ontology. One of the po-
tential problems we have seen in our approach is search space. Since our method
is unsupervised, it tends to search the entire space for results, which is computa-
tionally costly. We thus need a better method to prune the search space so that
out method provide better results. According to domain experts, our method
extracts good vocabulary but provides a flat structure. They have proposed a
sort of a semi-supervised approach to correct this problem, by combining the
knowledge from domain experts and results produced by our system. We left the
detailed investigation for future work.

Since our method is based on the Bayesian reasoning (which uses N-gram
probabilities), it is paramount that the corpus contains enough evidence of the re-
dundant information. This condition requires that the corpus to be large enough
so that we can hypothesize that the corpus provides enough evidence to build
the ontology.

We hypothesize that a sentence of the corpus would generally be subjected to
the grammar rule given in expression 1. This constituent is the main factor that
uses to build the relationships among concepts. In NLP, there are many other
finer grained grammar rules that specifically fit for given sentences. If these
grammar rules are used, we believe we can build a better relationship model.
We have left this for future work.

At the moment our system does not distinguish between concepts and the
individuals of the concepts. The learned A-Box primarily consists of the proba-
bilities of each concepts. This is one area where we are eager to work on. Using
the state-of-the art NLP techniques, we plan to fill this gap in a future work.
Since our method has the potential to be used in any corpus, it could be seen
that the lemmatizing and stemming algorithms that are available in WordNet
would not recognize some of the words. Specially in the BioAssay corpus, we
observe that some of the domain specific words are not recognized by WordNet.
We use the Porter stemming algorithm [18] to get the word form and it shows
that this algorithm constructs peculiar word forms. Therefore, we deliberately
remove it from the processing pipeline.

The complexity of our algorithms is as follows. The bootstrapping algorithm
available in the syntactic layer has a worst case running time of O(M×max(sj)×
max(wk)), where M is the number of documents, sj is a the number of sentences
in a document, and wk is the number of words in a sentence. The probabilistic
reasoning algorithm has the worst case running time of O(|L|×|SuperConcepts|),
where |L| is the size of the lexicon and |SuperConcepts| is the size of the su-
per concepts set. The ontologies generated from the system are consistent with
Pellet14 and FaCT++15 reasoners.

14 http://clarkparsia.com/pellet
15 http://owl.man.ac.uk/factplusplus/



Finally, our method provides a process to create a lexico-semantic ontology
for any domain. For our knowledge, this is a very first research on this line of
work. So we continue our research along this line and to provide better results
for future use.

6 Conclusion

We have introduced a novel process to generate an ontology for any random text
corpus. We have shown that our process constructs a flexible ontology. It is also
shown that in order to achieve high precision, it is paramount that the corpus
should be large enough to extract important evidence. Our research has also
shown that probabilistic reasoning on lexico-semantic structures is a powerful
solution to overcome or at least mitigate the knowledge acquisition bottleneck.
Our method also provides evidence to domain experts to build ontologies using
a top-down approach.

Though we have introduced a powerful technique to construct ontologies,
we believe that there is a lot of work that can be done to improve the per-
formance of our system. One of the areas our method lacks is the separation
between concepts and individuals. We would like to use the generated ontology
as a seed ontology to generate instances for the concepts and extract the indi-
viduals already classified as concepts. We would use NLP technique to obtain
this classification. In addition to this, our system can improve the quality of
the relations if we introduce more specific grammar rules to sentences. We are
looking at computational lexical semantics to prune the search space, so that
the algorithms are efficient. Finally, we would like to increase the lexicon of the
system with more tags available from the Penn treebank tag set. We believe
that if we introduce more tags into the system, our system can be trained to
construct human readable (friendly) concepts and relations names.
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